Continuous Simulation for Urban Energy Planning Based on a Non-Linear Data-Driven Modelling Approach

The thesis develops the argument for scale sensitive local energy planning, combining energy demand simulation with the development of continuous benchmarks. A non-linear data driven modelling approach is selected to represent space heating needs for urban areas. The model is applied to the scale of buildings, building clusters and neighbourhoods and compared to measured data in order to test its scalability. The results confirm the applicability of the approach to the scale of neighbourhoods.

[1]  Richard Karl Strand,et al.  Energy Estimating and Modeling Methods , 2005 .

[2]  Steffen Bayer,et al.  Business dynamics: Systems thinking and modeling for a complex world , 2004 .

[3]  R. Venterea Climate Change 2007: Mitigation of Climate Change , 2009 .

[4]  Aviel Verbruggen,et al.  A systemmodel of combined heat and power generation in district heating , 1982 .

[5]  Daniel O. Stram,et al.  The applicability of PRISM to electric heating and cooling , 1986 .

[6]  H. Madsen,et al.  Modelling the heat consumption in district heating systems using a grey-box approach , 2006 .

[7]  Franklin H. Holcomb,et al.  Towards a Net Zero Building Cluster Energy Systems Analysis for a Brigade Combat Team Complex , 2010 .

[8]  Michele M. Betsill,et al.  Cities and the Multilevel Governance of Global Climate Change , 2006, Understanding Global Cooperation.

[10]  M. Havranek,et al.  Methodology for inventorying greenhouse gas emissions from global cities , 2010 .

[11]  F Déqué,et al.  Grey boxes used to represent buildings with a minimum number of geometric and thermal parameters , 2000 .

[12]  C. Nytsch-Geusen,et al.  DEVELOPMENT OF MODELING AND SIMULATION STRATEGIES 1 FOR LARGE-SCALE URBAN DISTRICTS 2 3 , 2011 .

[13]  Alfred Heller Demand Modelling for Central Heating Systems , 2000 .

[14]  Philipp Rode,et al.  Cities: investing in energy and resource efficiency , 2011 .

[16]  K. Vajen,et al.  INFLUENCE OF THE DHW-LOAD PROFILE ON THE FRACTIONAL ENERGY SAVINGS: A CASE STUDY OF A SOLAR COMBI-SYSTEM WITH TRNSYS SIMULATIONS , 2001 .

[17]  Kiumars Farkisch Data-Warehouse-Systeme kompakt , 2011 .

[18]  Fu Xiao,et al.  Quantitative energy performance assessment methods for existing buildings , 2012 .

[19]  Till Jenssen,et al.  Effiziente und konsistente Strukturen - Rahmenbedingungen für die Nutzung von Wärmeenergie in Privathaushalten , 2010 .

[20]  Leon S. Lasdon,et al.  Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming , 1978, TOMS.

[21]  Frédéric Magoulès,et al.  A review on the prediction of building energy consumption , 2012 .

[22]  Sébastien Girard,et al.  Towards a neighbourhood scale for low- or zero-carbon building projects , 2012 .

[23]  Bertoldi Paolo,et al.  Existing Methodologies and Tools for the Development and Implementation of Sustainable Energy Action Plans (SEAP) , 2010 .

[24]  Andreas Huber,et al.  Nachhaltigkeit in Stadtquartieren zwischen standardisierter Planung und kontextbezogenen Prozessen , 2012 .

[25]  Bertoldi Paolo,et al.  HOW TO DEVELOP A SUSTAINABLE ENERGY ACTION PLAN (SEAP) IN THE EASTERN PARTNERSHIP AND CENTRAL ASIAN CITIES ─ GUIDEBOOK. PART II – Baselines Emission Inventories , 2013 .

[26]  Wolf Fichtner,et al.  Energy efficiency in the German residential sector: A bottom-up building-stock-model-based analysis in the context of energy-political targets , 2013 .

[27]  Yoshiyuki Shimoda,et al.  District-scale simulation for multi-purpose evaluation of urban energy systems , 2010 .

[28]  Christos S. Ioakimidis,et al.  On the planning and analysis of Integrated Community Energy Systems: A review and survey of available tools , 2011 .

[29]  J M Bland,et al.  Statistical methods for assessing agreement between two methods of clinical measurement , 1986 .

[30]  G. Galster On the Nature of Neighbourhood , 2001 .

[31]  Un Environment Inclusive Green EconomyResources,et al.  Towards a Green Economy Pathways to Sustainable Development and Poverty Eradication, Conclusion , 2017 .

[32]  M. Kühlmeyer,et al.  Statistische Auswertungsmethoden für Ingenieure , 2001 .

[33]  Thomas Bruckner,et al.  High-Resolution Modeling of Energy-Services Supply Systems Using deeco: Overview and Application to Policy Development , 2003, Ann. Oper. Res..

[34]  Fredrik Karlsson,et al.  Measured and predicted energy demand of a low energy building: important aspects when using Building Energy Simulation , 2007 .

[35]  Volker Coors,et al.  Citygml-based 3d City Model For Energy Diagnostics And Urban Energy Policy Support , 2013, Building Simulation Conference Proceedings.

[36]  N. Toly,et al.  Transnational Municipal Networks in Climate Politics: From Global Governance to Global Politics , 2008 .

[37]  Mark S. Martinez,et al.  International performance measurement & verification protocol: Concepts and options for determining energy and water savings , 2001 .

[38]  R. Eckert Klimagerechte und energieeffiziente Siedlungsstrukturen in urbanenWachstumszentren Vietnams. Strategien für Stadtentwicklung und Wohnraumversorgung zurAnpassung an die Folgen des Klimawandels in Ho Chi Minh City , 2009 .

[39]  F Jäger PASSIVE SOLAR ENERGY USE IN BUILDINGS , 1981 .

[40]  Bahram Moshfegh,et al.  Energy efficient neighbourhood case studies , 2013 .

[41]  Jacques Teller,et al.  Energy requirements of characteristic urban blocks , 2009 .

[42]  Enrique Kremers,et al.  Towards complex system design and management in the engineering domain – the smart grid challenge , 2013 .

[43]  Wolf Fichtner,et al.  On the economic potential for electric load management in the German residential heating sector : An optimising energy system model approach , 2014 .

[44]  Raimund Bleischwitz,et al.  Measuring urban greenhouse gas emissions : the challenge of comparability , 2009 .

[45]  P. Young,et al.  Simplicity out of complexity in environmental modelling: Occam's razor revisited. , 1996 .

[46]  Andreas Koch Heat demand modeling at the scale of urban neighborhoods , 2010, Next generation infrastructure systems for eco-cities.

[47]  Darren Robinson,et al.  The impact of occupants' behaviour on building energy demand , 2011 .

[48]  J. Nußbicker-Lux Simulation und Dimensionierung solar unterstützter Nahwärmesysteme mit Erdsonden-Wärmespeicher , 2010 .

[49]  Dejan Mumovic,et al.  A review of bottom-up building stock models for energy consumption in the residential sector , 2010 .

[50]  Matteo Chiesa,et al.  A cooling change-point model of community-aggregate electrical load , 2011 .

[51]  F. Maréchal,et al.  Energy Planning in the Urban Context: Challenges and Perspectives☆ , 2015 .

[52]  Karsten Voss,et al.  Load Matching and Grid Interaction of Net Zero Energy Buildings , 2010 .

[53]  Robert Wrembel,et al.  Data Warehouses And Olap: Concepts, Architectures And Solutions , 2006 .

[54]  Sandra Rechlin,et al.  Kommunaler Klimaschutz in Deutschland : Handlungsoptionen, Entwicklung und Perspektiven , 2005 .

[55]  Mark Jennings,et al.  A review of urban energy system models: Approaches, challenges and opportunities , 2012 .

[56]  Margaret F. Fels PRISM: An Introduction , 1986 .

[57]  Wolf Fichtner,et al.  Analyse der Wärme-und Elektrizitätsversorgung des deutschen Wohngebäudesektors in einem optimierenden Energiesystemmodell , 2012 .

[58]  Sven Strauss Sustainable Fossil Fuels The Unusual Suspect In The Quest For Clean And Enduring Energy , 2016 .

[59]  A. Rasheed,et al.  CITYSIM: Comprehensive Micro-Simulation of Resource Flows for Sustainable Urban Planning , 2009 .

[60]  Kristine Kern,et al.  Governing Climate Change in Cities: Modes of Urban Climate Governance in Multi-Level Systems , 2009 .

[61]  Jean-Louis Scartezzini,et al.  A simplified correlation method accounting for heating and cooling loads in energy-efficient buildings , 1998 .

[62]  Bernd Geiger,et al.  Anwendungsbilanzen für die Endenergiesektoren in Deutschland in den Jahren 2010 und 2011 , 2012 .

[63]  Volker Coors,et al.  3D City modeling for urban scale heating energy demand forecasting , 2011 .

[64]  G. Brundtland,et al.  Our Common Future (‘The Brundtland Report’): World Commission on Environment and Development , 2009 .

[65]  L. D. Hopkins,et al.  Urban Development: The Logic Of Making Plans , 2001 .

[66]  Enrique Kremers,et al.  Towards a 3d Spatial Urban Energy Modelling Approach , 2013 .

[67]  Yoshiyuki Shimoda,et al.  Reduction potential of operational carbon dioxide emission of Nakanoshima business/cultural area as a model for low-carbon districts in warm climates , 2013 .

[68]  M. Hellwig,et al.  Entwicklung und Anwendung parametrisierter Standard-Lastprofile , 2003 .

[69]  Semida Silveira,et al.  Shaping our energy system – combining European modelling expertise : Case studies of the European energy system in 2050 , 2013 .

[70]  A. Saadat Methodische Ansätze zur Erstellung dezentraler multivalenter Energieversorgungskonzepte für Siedlungen im Iran , 2003 .

[71]  Un-Habitat Planning Sustainable Cities: Global Report on Human Settlements 2009 , 2009 .

[72]  Andreas Koch,et al.  The Benefits of Combined District Energy Modelling and Monitoring: the Case of District Heating , 2014 .

[73]  David E. Claridge,et al.  Statistical modeling of the building energy balance variable for screening of metered energy use in large commercial buildings , 2014 .

[74]  Erik Dotzauer,et al.  Simple model for prediction of loads in district-heating systems , 2002 .

[75]  H. Bulkeley,et al.  A survey of urban climate change experiments in 100 cities , 2013, Global environmental change : human and policy dimensions.

[76]  Jens Buchgeister,et al.  Exergy-based Planning and Thermography-based Monitoring for energy efficient buildings - Progress Report (KIT Scientific Reports ; 7632) , 2012 .

[77]  J. Kelly Kissock,et al.  Targeting Residential Energy Assistance , 2007 .

[78]  Tobias Gerke Data Warehouse, Data Mining, Weblog Mining , 2003 .

[79]  Olivier Pol Energy Performance Indicators for Neighbourhoods Applied on CONCERTO Projects , 2011 .

[80]  Alfred Heller Heat-load modelling for large systems , 2002 .

[81]  François Maréchal,et al.  EnerGis: A geographical information based system for the evaluation of integrated energy conversion systems in urban areas , 2008 .

[82]  A. Rabl,et al.  Energy signature models for commercial buildings: test with measured data and interpretation , 1992 .

[83]  Enrique Kremers,et al.  Model-Based Analysis of Urban Energy Systems (on the Basis of a City's Energy Master Plan) , 2015 .

[84]  Paul Raftery,et al.  A review of methods to match building energy simulation models to measured data , 2014 .

[85]  David E. Claridge,et al.  Inverse Modeling Toolkit: Numerical Algorithms , 2004 .

[86]  R. Defila,et al.  Needs and consumption – a conceptual system and its meaning in the context of sustainability , 2012 .

[87]  Enrique Kremers,et al.  Towards a 3D Spatial Urban Energy Modelling Approach , 2013, Int. J. 3 D Inf. Model..

[88]  Y. Shimoda,et al.  Evaluation of city-scale impact of residential energy conservation measures using the detailed end-use simulation model , 2007 .

[89]  Y. Shimoda,et al.  Residential end-use energy simulation at city scale , 2004 .