Munc13 Mediates the Transition from the Closed Syntaxin–Munc18 complex to the SNARE complex

During the priming step that leaves synaptic vesicles ready for neurotransmitter release, the SNARE syntaxin-1 transitions from a closed conformation that binds Munc18-1 tightly to an open conformation within the highly stable SNARE complex. Control of this conformational transition is important for brain function, but the underlying mechanism is unknown. NMR and fluorescence experiments now show that the Munc13-1 MUN domain, which plays a central role in vesicle priming, markedly accelerates the transition from the syntaxin-1–Munc18-1 complex to the SNARE complex. This activity depends on weak interactions of the MUN domain with the syntaxin-1 SNARE motif, and probably with Munc18-1. Together with available physiological data, these results provide a defined molecular basis for synaptic vesicle priming, and they illustrate how weak protein-protein interactions can play crucial biological roles by promoting transitions between high-affinity macromolecular assemblies.

[1]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.

[2]  I. Dulubova,et al.  NMR analysis of the closed conformation of syntaxin-1 , 2008, Journal of biomolecular NMR.

[3]  Reinhard Jahn,et al.  Structure and Conformational Changes in NSF and Its Membrane Receptor Complexes Visualized by Quick-Freeze/Deep-Etch Electron Microscopy , 1997, Cell.

[4]  H. Rieger,et al.  Two distinct secretory vesicle–priming steps in adrenal chromaffin cells , 2010, The Journal of cell biology.

[5]  Erik M. Jorgensen,et al.  A post-docking role for active zone protein Rim , 2001, Nature Neuroscience.

[6]  T. Südhof,et al.  Mammalian Homologues of Caenorhabditis elegans unc-13 Gene Define Novel Family of C2-domain Proteins (*) , 1995, The Journal of Biological Chemistry.

[7]  Axel T Brunger,et al.  Structure and function of SNARE and SNARE-interacting proteins , 2005, Quarterly Reviews of Biophysics.

[8]  T. Ha,et al.  Single-Vesicle Fusion Assay Reveals Munc18-1 Binding to the SNARE Core Is Sufficient for Stimulating Membrane Fusion , 2010, ACS chemical neuroscience.

[9]  Richard H. Scheller,et al.  Three-dimensional structure of the neuronal-Sec1–syntaxin 1a complex , 2000, Nature.

[10]  Neil J. Daily,et al.  CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions , 2009, Proceedings of the National Academy of Sciences.

[11]  U. Matti,et al.  Identification of the Minimal Protein Domain Required for Priming Activity of Munc13-1 , 2005, Current Biology.

[12]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[13]  Josep Rizo,et al.  Dual Modes of Munc18-1/SNARE Interactions Are Coupled by Functionally Critical Binding to Syntaxin-1 N Terminus , 2007, The Journal of Neuroscience.

[14]  J. Rizo,et al.  Synaptic vesicle fusion , 2008, Nature Structural &Molecular Biology.

[15]  E. Jorgensen,et al.  An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming , 2001, Nature.

[16]  Ralf Schneggenburger,et al.  A Munc13/RIM/Rab3 tripartite complex: from priming to plasticity? , 2005, The EMBO journal.

[17]  J. Rizo,et al.  The Janus-Faced Nature of the C2B Domain Is Fundamental for Synaptotagmin-1 Function , 2008, Nature Structural &Molecular Biology.

[18]  Christian Rosenmund,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to 12 Tables S1 and S2 References and Notes Conformational Switch of Syntaxin-1 Controls Synaptic Vesicle Fusion , 2022 .

[19]  Dirk Fasshauer,et al.  Munc18a controls SNARE assembly through its interaction with the syntaxin N‐peptide , 2008, The EMBO journal.

[20]  J. Rizo,et al.  Facile detection of protein-protein interactions by one-dimensional NMR spectroscopy. , 2003, Biochemistry.

[21]  J. Rothman,et al.  Selective Activation of Cognate SNAREpins by Sec1/Munc18 Proteins , 2007, Cell.

[22]  T. Südhof,et al.  Structural Basis for a Munc13–1 Homodimer to Munc13–1/RIM Heterodimer Switch , 2006, PLoS biology.

[23]  J. Rizo,et al.  A quaternary SNARE-synaptotagmin-Ca2+-phospholipid complex in neurotransmitter release. , 2007, Journal of molecular biology.

[24]  Nils Brose,et al.  Functional Interaction of the Active Zone Proteins Munc13-1 and RIM1 in Synaptic Vesicle Priming , 2001, Neuron.

[25]  J. Rizo,et al.  Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity , 2010, Nature Structural &Molecular Biology.

[26]  N. Grishin,et al.  A minimal domain responsible for Munc13 activity , 2005, Nature Structural &Molecular Biology.

[27]  T. Südhof,et al.  Redundant functions of RIM1α and RIM2α in Ca2+‐triggered neurotransmitter release , 2006 .

[28]  Kendal Broadie,et al.  Drosophila Unc-13 is essential for synaptic transmission , 1999, Nature Neuroscience.

[29]  T. Südhof,et al.  A conformational switch in syntaxin during exocytosis: role of munc18 , 1999, The EMBO journal.

[30]  Alexander M. Walter,et al.  Synaptobrevin N-terminally bound to syntaxin–SNAP-25 defines the primed vesicle state in regulated exocytosis , 2010, The Journal of cell biology.

[31]  T. Sudhof,et al.  The synaptic vesicle cycle. , 2004, Annual review of neuroscience.

[32]  Thomas C. Südhof,et al.  RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone , 2002, Nature.

[33]  Colin Rickman,et al.  Munc18-1 prevents the formation of ectopic SNARE complexes in living cells , 2007, Journal of Cell Science.

[34]  A. Brunger,et al.  Accessory proteins stabilize the acceptor complex for synaptobrevin, the 1:1 syntaxin/SNAP-25 complex. , 2008, Structure.

[35]  Demet Araç,et al.  Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. , 2006, Trends in cell biology.

[36]  N. Grishin,et al.  Remote homology between Munc13 MUN domain and vesicle tethering complexes. , 2009, Journal of molecular biology.

[37]  Josep Ubach,et al.  Three-Dimensional Structure of an Evolutionarily Conserved N-Terminal Domain of Syntaxin 1A , 1998, Cell.

[38]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[39]  Christian Rosenmund,et al.  Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  T. Südhof,et al.  Munc18-1 binds directly to the neuronal SNARE complex , 2007, Proceedings of the National Academy of Sciences.

[41]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[42]  W. Xiao,et al.  The synaptic SNARE complex is a parallel four-stranded helical bundle , 1998, Nature Structural Biology.

[43]  T. Südhof,et al.  Three-Dimensional Structure of the Complexin/SNARE Complex , 2002, Neuron.

[44]  T. Walz,et al.  A Structure-Based Mechanism for Vesicle Capture by the Multisubunit Tethering Complex Dsl1 , 2009, Cell.

[45]  Josep Rizo,et al.  Binding of Munc18-1 to synaptobrevin and to the SNARE four-helix bundle. , 2010, Biochemistry.

[46]  Greta Hultqvist,et al.  A Protein Interaction Node at the Neurotransmitter Release Site: Domains of Aczonin/Piccolo, Bassoon, CAST, and Rim Converge on the N-Terminal Domain of Munc13-1 , 2009, The Journal of Neuroscience.

[47]  Christian Rosenmund,et al.  Munc13-1 C1 Domain Activation Lowers the Energy Barrier for Synaptic Vesicle Fusion , 2007, The Journal of Neuroscience.

[48]  N. Brose,et al.  Direct Interaction of the Rat unc-13 Homologue Munc13-1 with the N Terminus of Syntaxin* , 1997, The Journal of Biological Chemistry.

[49]  Shailendra S. Rathore,et al.  SNARE bundle and syntaxin N-peptide constitute a minimal complement for Munc18-1 activation of membrane fusion , 2010, The Journal of cell biology.

[50]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[51]  J. Rizo,et al.  At the junction of SNARE and SM protein function. , 2010, Current opinion in cell biology.

[52]  T. Südhof,et al.  Munc18-1 binding to the neuronal SNARE complex controls synaptic vesicle priming , 2009, The Journal of cell biology.

[53]  Thomas C. Südhof,et al.  Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles , 1999, Nature.

[54]  T. Südhof,et al.  Redundant functions of RIM1alpha and RIM2alpha in Ca(2+)-triggered neurotransmitter release. , 2006, The EMBO journal.

[55]  Lewis E. Kay,et al.  Methyl groups as probes of supra-molecular structure, dynamics and function , 2010, Journal of biomolecular NMR.

[56]  J. Rizo,et al.  Binding of the Munc13-1 MUN domain to membrane-anchored SNARE complexes. , 2008, Biochemistry.

[57]  T. Südhof,et al.  Synaptic assembly of the brain in the absence of neurotransmitter secretion. , 2000, Science.

[58]  J. Kaplan,et al.  UNC-13 Interaction with Syntaxin Is Required for Synaptic Transmission , 2005, Current Biology.

[59]  V. Subramaniam,et al.  SNARE assembly and disassembly exhibit a pronounced hysteresis , 2002, Nature Structural Biology.

[60]  L. Kay,et al.  Line narrowing in methyl-TROSY using zero-quantum 1H-13C NMR spectroscopy. , 2004, Journal of the American Chemical Society.

[61]  E. Jorgensen,et al.  UNC-13 is required for synaptic vesicle fusion in C. elegans , 1999, Nature Neuroscience.