Molecular cloning of disintegrins from Cerastes vipera and Macrovipera lebetina transmediterranea venom gland cDNA libraries: insight into the evolution of the snake venom integrin-inhibition system.

We report the cloning and sequence analysis of Cerastes vipera and Macrovipera lebetina transmediterranea cDNAs coding for short non-RGD (Arg-Gly-Asp) disintegrins and for dimeric disintegrin subunits. The mRNAs belong to the short-coding class, suggesting that these disintegrin mRNAs may be more widely distributed than previously thought. Our data also argue for a common ancestry of the mRNAs of short disintegrins and those coding for precursors of dimeric disintegrin chains. The Macrovipera lebetina transmediterranea dimeric disintegrin reported to inhibit the laminin-binding integrins alpha3beta1, alpha6beta1 and alpha7beta1 was analysed using a proteomic approach and was shown to bear MLD (Met-Leu-Asp) and VGD (Val-Gly-Asp) motifs. The results highlight the fact that disintegrins have evolved a restricted panel of integrin-blocking sequences that segregate with defined branches of the phylogenetic tree of the integrin alpha-chains, providing novel insights into the evolutionary adaptation of the snake venom antagonists to the ligand-binding sites of their target integrin receptors.

[1]  A. Moura-da-Silva,et al.  Evolution of disintegrin cysteine-rich and mammalian matrix-degrading metalloproteinases: Gene duplication and divergence of a common ancestor rather than convergent evolution , 1996, Journal of Molecular Evolution.

[2]  E. Pérez-Payá,et al.  cDNA Cloning and Functional Expression of Jerdostatin, a Novel RTS-disintegrin from Trimeresurus jerdonii and a Specific Antagonist of the α1β1 Integrin* , 2005, Journal of Biological Chemistry.

[3]  Sabatier Jean-Marc,et al.  Lebestatin, a disintegrin from Macrovipera venom, inhibits integrin-mediated cell adhesion, migration and angiogenesis , 2005, Laboratory Investigation.

[4]  J. Calvete,et al.  Snake venomics: Comparative analysis of the venom proteomes of the Tunisian snakes Cerastes cerastes, Cerastes vipera and Macrovipera lebetina , 2005, Proteomics.

[5]  M. Perbandt,et al.  Crystal structure of the disintegrin heterodimer from saw-scaled viper (Echis carinatus) at 1.9 A resolution. , 2005, Biochemistry.

[6]  Julian White Snake venoms and coagulopathy. , 2005, Toxicon : official journal of the International Society on Toxinology.

[7]  J. Calvete,et al.  Snake venom disintegrins: evolution of structure and function. , 2005, Toxicon : official journal of the International Society on Toxinology.

[8]  J. Huxley-Jones,et al.  The integrins of the urochordate Ciona intestinalis provide novel insights into the molecular evolution of the vertebrate integrin family , 2005, BMC Evolutionary Biology.

[9]  J. Heino,et al.  Integrin evolution: insights from ascidian and teleost fish genomes. , 2005, Matrix biology : journal of the International Society for Matrix Biology.

[10]  B. Fry From genome to "venome": molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. , 2005, Genome research.

[11]  J. Calvete Structure-function correlations of snake venom disintegrins. , 2005, Current pharmaceutical design.

[12]  M. Ohno,et al.  Molecular diversity and accelerated evolution of C-type lectin-like proteins from snake venom. , 2005, Toxicon : official journal of the International Society on Toxinology.

[13]  J. Calvete,et al.  Structural determinants of the selectivity of KTS‐disintegrins for the α1β1 integrin , 2004 .

[14]  Sujata Sharma,et al.  Crystal structure of schistatin, a disintegrin homodimer from saw-scaled viper (Echis carinatus) at 2.5 A resolution. , 2004, Journal of molecular biology.

[15]  J. Ribeiro,et al.  Bitis gabonica (Gaboon viper) snake venom gland: toward a catalog for the full-length transcripts (cDNA) and proteins. , 2004, Gene.

[16]  W. Wüster,et al.  Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences. , 2004, Molecular biology and evolution.

[17]  J. Calvete,et al.  Snake venomics: Characterization of protein families in Sistrurus barbouri venom by cysteine mapping, N‐terminal sequencing, and tandem mass spectrometry analysis , 2004, Proteomics.

[18]  J. Calvete,et al.  Concerted Motions of the Integrin-binding Loop and the C-terminal Tail of the Non-RGD Disintegrin Obtustatin* , 2003, Journal of Biological Chemistry.

[19]  R. Harrison,et al.  Novel sequences encoding venom C-type lectins are conserved in phylogenetically and geographically distinct Echis and Bitis viper species. , 2003, Gene.

[20]  U. Mayer,et al.  Vipera lebetina Venom Contains Two Disintegrins Inhibiting Laminin-binding β1 Integrins* , 2003, Journal of Biological Chemistry.

[21]  Juan J Calvete,et al.  Snake venom disintegrins: novel dimeric disintegrins and structural diversification by disulphide bond engineering. , 2003, The Biochemical journal.

[22]  I. Chu,et al.  Unique scanning capabilities of a new hybrid linear ion trap mass spectrometer (Q TRAP) used for high sensitivity proteomics applications , 2003, Proteomics.

[23]  J. Calvete,et al.  NMR solution structure of the non-RGD disintegrin obtustatin. , 2003, Journal of molecular biology.

[24]  J. Calvete,et al.  Obtustatin A Potent Selective Inhibitor of α1β1 Integrin in Vitro and Angiogenesis in Vivo , 2003 .

[25]  J. Calvete,et al.  Amino acid sequence and homology modeling of obtustatin, a novel non‐RGD‐containing short disintegrin isolated from the venom of Vipera lebetina obtusa , 2003, Protein science : a publication of the Protein Society.

[26]  T. Morita,et al.  A new gene structure of the disintegrin family: a subunit of dimeric disintegrin has a short coding region. , 2002, Biochemistry.

[27]  Richard O Hynes,et al.  Integrins Bidirectional, Allosteric Signaling Machines , 2002, Cell.

[28]  Thilo Stehle,et al.  Crystal Structure of the Extracellular Segment of Integrin αVβ3 in Complex with an Arg-Gly-Asp Ligand , 2002, Science.

[29]  A. Ménez Perspectives in molecular toxinology , 2002 .

[30]  Thilo Stehle,et al.  Crystal Structure of the Extracellular Segment of Integrin αVβ3 , 2001, Science.

[31]  H. Karoui,et al.  Amino acid structure and characterization of a heterodimeric disintegrin from Vipera lebetina venom. , 2001, Biochimica et biophysica acta.

[32]  David A. Bader,et al.  Facial Expression Recognition System using Statistical Feature and Neural Network , 2012 .

[33]  A. Hughes Evolution of the Integrin α and β Protein Families , 2001, Journal of Molecular Evolution.

[34]  J. Calvete,et al.  Disulphide-bond pattern and molecular modelling of the dimeric disintegrin EMF-10, a potent and selective integrin alpha5beta1 antagonist from Eristocophis macmahoni venom. , 2000, The Biochemical journal.

[35]  F. Markland Snake venoms and the hemostatic system. , 1998, Toxicon : official journal of the International Society on Toxinology.

[36]  J. Fox,et al.  Expression, activation, and processing of the recombinant snake venom metalloproteinase, pro-atrolysin E. , 1996, Archives of biochemistry and biophysics.

[37]  A. Tu,et al.  cDNA Cloning and Deduced Amino Acid Sequence of Fibrinolytic Enzyme (Lebetase) fromVipera lebetinaSnake Venom , 1996 .

[38]  A. Tu,et al.  cDNA cloning and deduced amino acid sequence of fibrinolytic enzyme (lebetase) from Vipera lebetina snake venom. , 1996, Biochemical and biophysical research communications.

[39]  R. Kini,et al.  Structural domains in venom proteins: evidence that metalloproteinases and nonenzymatic platelet aggregation inhibitors (disintegrins) from snake venoms are derived by proteolysis from a common precursor. , 1992, Toxicon : official journal of the International Society on Toxinology.