Decoding Quantum Error Correction Codes With Local Variation

In this article, we investigate the role of local information in the decoding of the repetition and surface error correction codes for the protection of quantum states. Our key result is an improvement in resource efficiency when local information is taken into account during the decoding process: the code distance associated with a given logical error rate is reduced with a magnitude depending on the proximity of the physical error rate to the accuracy threshold of the code. We also briefly discuss an averaged approach with local information for table lookup and localized decoding schemes, an expected breakdown of these effects for large-scale systems, and the importance of this resource reduction in the near term.

[1]  W. Marsden I and J , 2012 .

[2]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[3]  Artur Ekert,et al.  Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  O. William Journal Of The American Statistical Association V-28 , 1932 .

[5]  D. Deutsch,et al.  The stabilisation of quantum computations , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[6]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[7]  David Poulin,et al.  A renormalization group decoding algorithm for topological quantum codes , 2010, 2010 IEEE Information Theory Workshop.

[8]  Vladimir Kolmogorov,et al.  Blossom V: a new implementation of a minimum cost perfect matching algorithm , 2009, Math. Program. Comput..

[9]  Kae Nemoto,et al.  High-threshold topological quantum error correction against biased noise , 2013, 1308.4776.

[10]  T. M. Stace,et al.  Error Correction and Degeneracy in Surface Codes Suffering Loss , 2009, 0912.1159.

[11]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[12]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[13]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  Raymond Laflamme,et al.  Quantum Computers, Factoring, and Decoherence , 1995, Science.

[15]  Eduardo R. Mucciolo,et al.  Numerical evaluation of the fidelity error threshold for the surface code , 2014 .

[16]  Stan Baggen,et al.  Error Correction , 1984 .

[17]  A Retzker,et al.  Increasing sensing resolution with error correction. , 2013, Physical review letters.

[18]  Sean D Barrett,et al.  Fault tolerant quantum computation with very high threshold for loss errors. , 2010, Physical review letters.

[19]  Eduardo R. Mucciolo,et al.  Fidelity Threshold of the Surface Code Beyond Single-Qubit Error Models , 2014 .

[20]  Austin G. Fowler,et al.  Coping with qubit leakage in topological codes , 2013, 1308.6642.

[21]  M. Lukin,et al.  Quantum error correction for metrology. , 2013, Physical review letters.

[22]  R. Landauer Is quantum mechanics useful , 1995 .

[23]  F. S. Prout Philosophical Transactions of the Royal Society of London , 2009, The London Medical Journal.

[24]  John Preskill,et al.  Fault-tolerant quantum computation against biased noise , 2007, 0710.1301.

[25]  Masayuki Ohzeki,et al.  Error threshold estimates for surface code with loss of qubits , 2012, 1202.2593.

[26]  Peter Bernard Brooks,et al.  Quantum Error Correction with Biased Noise , 2013 .

[27]  Vaidman,et al.  Error prevention scheme with four particles. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[28]  M. Markham,et al.  Quantum Metrology Enhanced by Repetitive Quantum Error Correction. , 2016, Physical review letters.

[29]  M. K. Bhaskar,et al.  Experimental demonstration of memory-enhanced quantum communication , 2020, Nature.

[30]  E. Novais,et al.  Fidelity of the surface code in the presence of a bosonic bath , 2013 .

[31]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[32]  William K. Wootters,et al.  Reduction of Quantum Entropy by Reversible Extraction of Classical Information , 1994 .

[33]  David Poulin,et al.  Fault-tolerant renormalization group decoder for abelian topological codes , 2013, Quantum Inf. Comput..

[34]  A. Doherty,et al.  Thresholds for topological codes in the presence of loss. , 2009, Physical review letters.

[35]  Helmut G. Katzgraber,et al.  Strong resilience of topological codes to depolarization , 2012, 1202.1852.

[36]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[37]  Michael H. Freedman,et al.  Projective Plane and Planar Quantum Codes , 2001, Found. Comput. Math..

[38]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[39]  Unruh Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[40]  B. Kraus,et al.  Improved Quantum Metrology Using Quantum Error Correction , 2013, 1310.3750.

[41]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[42]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[43]  Keisuke Fujii,et al.  Error and loss tolerances of surface codes with general lattice structures , 2012, 1202.2743.

[44]  Austin G. Fowler,et al.  Quantum computing with nearest neighbor interactions and error rates over 1 , 2010, 1009.3686.

[45]  David Poulin,et al.  On the iterative decoding of sparse quantum codes , 2008, Quantum Inf. Comput..

[46]  Eduardo R Mucciolo,et al.  Surface code threshold in the presence of correlated errors. , 2012, Physical review letters.

[47]  Krysta Marie Svore,et al.  Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.

[48]  Ashley M. Stephens,et al.  Fault-tolerant thresholds for quantum error correction with the surface code , 2013, 1311.5003.

[49]  David Deutsch,et al.  Stabilization of Quantum Computations by Symmetrization , 1997, SIAM J. Comput..

[50]  Alexei Gilchrist,et al.  Loss-tolerant optical qubits. , 2005, Physical review letters.

[51]  Kae Nemoto,et al.  High-fidelity spin measurement on the nitrogen-vacancy center , 2017, 1705.00156.

[52]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[53]  Chad M. Oldfather,et al.  Error Correction , 1984, Encyclopedia of Algorithms.

[54]  Andrew W. Cross,et al.  Leakage suppression in the toric code , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[55]  E. B. Wilson Probable Inference, the Law of Succession, and Statistical Inference , 1927 .

[56]  Proceedings of the Royal Society (London) , 1906, Science.

[57]  Raymond Laflamme,et al.  Concatenated Quantum Codes , 1996 .

[58]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[59]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[60]  David Poulin,et al.  Tensor-Network Simulations of the Surface Code under Realistic Noise. , 2016, Physical review letters.

[61]  J. Preskill,et al.  Confinement Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory , 2002, quant-ph/0207088.