1 : 3 Resonance and Chaos in a Discrete Hindmarsh-Rose Model

1 : 3 resonance of a two-dimensional discrete Hindmarsh-Rose model is discussed by normal form method and bifurcation theory. Numerical simulations are presented to illustrate the theoretical analysis, which predict the occurrence of a closed invariant circle, period-three saddle cycle, and homoclinic structure. Furthermore, it also displays the complex dynamical behaviors, especially the transitions between three main dynamical behaviors, namely, quiescence, spiking, and bursting.

[1]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[2]  Shyan-Shiou Chen,et al.  Application of a Two-Dimensional Hindmarsh-Rose Type Model for bifurcation Analysis , 2013, Int. J. Bifurc. Chaos.

[3]  J. NAGUMOt,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 2006 .

[4]  Zhujun Jing,et al.  Bifurcation and chaos in discrete FitzHugh–Nagumo system ☆ , 2004 .

[5]  Svetoslav Nikolov,et al.  An alternative bifurcation analysis of the Rose–Hindmarsh model , 2005 .

[6]  Andrey Shilnikov,et al.  Methods of the Qualitative Theory for the Hindmarsh-rose Model: a Case Study - a Tutorial , 2008, Int. J. Bifurc. Chaos.

[7]  John Guckenheimer Bifurcations of Dynamical Systems , 2010 .

[8]  Alan R. Champneys,et al.  Codimension-Two Homoclinic Bifurcations Underlying Spike Adding in the Hindmarsh-Rose Burster , 2011, SIAM J. Appl. Dyn. Syst..

[9]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[10]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[11]  Zhimin He,et al.  Bifurcation and chaotic behavior of a discrete-time predator–prey system ☆ , 2011 .

[12]  Zhimin He,et al.  Neimark–Sacker bifurcation of a third-order rational difference equation , 2013 .

[13]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[14]  D. Terman,et al.  The transition from bursting to continuous spiking in excitable membrane models , 1992 .

[15]  Zhimin He,et al.  1:2 and 1:4 resonances in a two-dimensional discrete Hindmarsh–Rose model , 2015 .

[16]  J. Hindmarsh,et al.  A model of the nerve impulse using two first-order differential equations , 1982, Nature.

[17]  Dongmei Xiao,et al.  Complex dynamic behaviors of a discrete-time predator–prey system , 2007 .

[18]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[19]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[20]  Zhimin He,et al.  Bifurcations and chaos in a two-dimensional discrete Hindmarsh–Rose model , 2014 .

[21]  Enno de Lange,et al.  The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. , 2008, Chaos.

[22]  I. N. Bronstein,et al.  A Concise Handbook of Mathematics, Volume 2, , 1968 .

[23]  Xiao-Jing Wang,et al.  Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle , 1993 .

[24]  Alessandro Torcini,et al.  Dynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaos. , 2007, Chaos.

[25]  Zhidong Teng,et al.  The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence , 2013 .

[26]  Zhaosheng Feng,et al.  Fold-Hopf bifurcations of the Rose-Hindmarsh Model with Time Delay , 2011, Int. J. Bifurc. Chaos.

[27]  J. M. Gonzalez-Miranda Complex bifurcation Structures in the Hindmarsh-rose Neuron Model , 2007, Int. J. Bifurc. Chaos.

[28]  Hiroshi Kawakami,et al.  Bifurcations in Two-Dimensional Hindmarsh-rose Type Model , 2007, Int. J. Bifurc. Chaos.

[29]  Shenquan Liu,et al.  Codimension-two bifurcation analysis in two-dimensional Hindmarsh–Rose model , 2012 .