A Review of Carbon Nanotubes Field Effect-Based Biosensors

Field effect-based biosensors (BioFETs) stand out among other biosensing technologies due to their unique features such as real time screening, ultrasensitive detection, low cost, and amenability to extreme device miniaturization due to the convenient utilization of nanoscale materials. Nanodevices pave the way for the detection of tiny biomolecules and minute concentrations of analytes as they are ultrasensitive to surface charge modulation, allowing for better point-of-care screening of various life-threatening infectious diseases. Semiconducting carbon nanotubes (sc-CNTs) are exceptionally promising for FET-channel integration to replace bulky silicon technology beyond the dimensions of the short channel effects for their 1D ultrathin structure, superior electronic features, and biocompatibility. However, performance of CNTFET biosensors is influenced by the inhomogeneous interface between sc-CNTs and metallic source and drain electrodes. This article reviews recent studies on CNTFET biosensors, morphology of these devices and the cause-and-effect of the interface issues between sc-CNTs and metallic electrodes. Finally, future outlook on suggested technology to improve the performance of such CNTFET devices is presented.

[1]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[2]  Mukul Kumar,et al.  Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. , 2010, Journal of nanoscience and nanotechnology.

[3]  T. Nguyen,et al.  Triggering the Electrolyte-Gated Organic Field-Effect Transistor output characteristics through gate functionalization using diazonium chemistry: Application to biodetection of 2,4-dichlorophenoxyacetic acid. , 2018, Biosensors & bioelectronics.

[4]  Daniil Karnaushenko,et al.  Light Weight and Flexible High‐Performance Diagnostic Platform , 2015, Advanced healthcare materials.

[5]  M. D. Giles,et al.  The ultimate CMOS device and beyond , 2012, 2012 International Electron Devices Meeting.

[6]  W. Haensch,et al.  Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. , 2013, Nature nanotechnology.

[7]  Guo-Jun Zhang,et al.  Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene. , 2015, ACS applied materials & interfaces.

[8]  Koji Ishibashi,et al.  Transport characteristic control of field-effect transistors with single-walled carbon nanotube films using electrode metals with low and high work functions , 2006 .

[9]  James F. Rusling,et al.  Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules , 2007, Advanced materials.

[10]  K. Kalaichelvan,et al.  Synthesis of carbon nanotubes using Fe-Mo/Al2O3 bimetallic catalyst by CVD method , 2012, IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM -2012).

[11]  Guo-Jun Zhang,et al.  Molybdenum disulfide field-effect transistor biosensor for ultrasensitive detection of DNA by employing morpholino as probe. , 2018, Biosensors & bioelectronics.

[12]  Joshua T. Schiffer,et al.  Targeted DNA Mutagenesis for the Cure of Chronic Viral Infections , 2012, Journal of Virology.

[13]  Makarand Paranjape,et al.  Hysteresis modeling in ballistic carbon nanotube field-effect transistors , 2014, Nanotechnology, science and applications.

[14]  Qiyuan He,et al.  Graphene-based electronic sensors , 2012 .

[15]  Fabio Biscarini,et al.  Label free detection of plant viruses with organic transistor biosensors , 2019, Sensors and Actuators B: Chemical.

[16]  Paolo Lugli,et al.  Flexible Electrolyte-Gated Ion-Selective Sensors Based on Carbon Nanotube Networks , 2015, IEEE Sensors Journal.

[17]  Wilfried Haensch,et al.  Evaluation of field-effect mobility and contact resistance of transistors that use solution-processed single-walled carbon nanotubes. , 2012, ACS nano.

[18]  Yan Zhou,et al.  Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development , 2019, Sensors.

[19]  M. M. Abutaleb,et al.  Optimization of CNFET Parameters for High Performance Digital Circuits , 2016 .

[20]  Paolo Lugli,et al.  Metal-Free Fully Solution-Processable Flexible Electrolyte-Gated Carbon Nanotube Field Effect Transistor , 2017, IEEE Transactions on Electron Devices.

[21]  Ashok Mulchandani,et al.  High performance dendrimer functionalized single-walled carbon nanotubes field effect transistor biosensor for protein detection , 2016 .

[22]  Joong-Soo Han,et al.  Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors , 2016, Scientific Reports.

[23]  Yi Wang,et al.  Label-free electronic detection of interleukin-6 using horizontally aligned carbon nanotubes , 2016 .

[24]  P. Lugli,et al.  Enzyme assays using sensor arrays based on ion-selective carbon nanotube field-effect transistors. , 2016, Biosensors & bioelectronics.

[25]  Fred J Sigworth,et al.  Importance of the Debye screening length on nanowire field effect transistor sensors. , 2007, Nano letters.

[26]  G. S. Wilson,et al.  Electrochemical Biosensors: Recommended Definitions and Classification , 1999, Biosensors & bioelectronics.

[27]  Toshio Fukuda,et al.  Characterization of the Resistance and Force of a Carbon Nanotube/Metal Side Contact by Nanomanipulation , 2017, Scanning.

[28]  Jijun Zhao,et al.  Work functions of pristine and alkali-metal intercalated carbon nanotubes and bundles , 2001, cond-mat/0111103.

[29]  Sigeru Omatu,et al.  Zinc oxide ion‐sensitive field‐effect transistors and biosensors , 2014 .

[30]  Shoushan Fan,et al.  Measuring the work function of carbon nanotubes with thermionic method. , 2008, Nano letters.

[31]  T. Huyền,et al.  Carbon Nanotube Field-Effect Transistor for DNA Sensing , 2017, Journal of Electronic Materials.

[32]  Lauro T. Kubota,et al.  Recent Trends in Field-Effect Transistors-Based Immunosensors , 2016 .

[33]  Cheng Yang,et al.  Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. , 2015, Analytica chimica acta.

[34]  Michael Schröter,et al.  Contact resistance extraction methods for CNTFETs , 2015, 2015 45th European Solid State Device Research Conference (ESSDERC).

[35]  Augustus K. W. Chee Quantitative Dopant Profiling by Energy Filtering in the Scanning Electron Microscope , 2016, IEEE Transactions on Device and Materials Reliability.

[36]  Jiten Chandra Dutta,et al.  Fabrication, Characterization and Electrochemical Modeling of CNT Based Enzyme Field Effect Acetylcholine Biosensor , 2018, IEEE Sensors Journal.

[37]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[38]  T. Swager,et al.  Single-walled carbon nanotube/metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage. , 2015, Angewandte Chemie.

[39]  Aaron D. Franklin,et al.  Consistently low subthreshold swing in carbon nanotube transistors using lanthanum oxide , 2013 .

[40]  H. Wong,et al.  A Compact Virtual-Source Model for Carbon Nanotube FETs in the Sub-10-nm Regime—Part II: Extrinsic Elements, Performance Assessment, and Design Optimization , 2015, IEEE Transactions on Electron Devices.

[41]  Marc J. Madou,et al.  Three-dimensional carbon interdigitated electrode arrays for redox-amplification. , 2014, Analytical chemistry.

[42]  Dieter K. Schroder,et al.  Contact Resistance and Schottky Barriers , 2006 .

[43]  Libao An,et al.  Dielectrophoretic assembly of carbon nanotubes and stability analysis , 2013 .

[44]  Byung Jin Cho,et al.  Improvement of graphene–metal contact resistance by introducing edge contacts at graphene under metal , 2014 .

[45]  Michael J. Schöning,et al.  Nanomaterial-Modified Capacitive Field-Effect Biosensors , 2017 .

[46]  Jaebeom Lee,et al.  Plasmon-induced photoluminescence immunoassay for tuberculosis monitoring using gold-nanoparticle-decorated graphene. , 2014, ACS applied materials & interfaces.

[47]  Mohammad Hossein Moaiyeri,et al.  Performance analysis and enhancement of 10-nm GAA CNTFET-based circuits in the presence of CNT-metal contact resistance , 2017, Journal of Computational Electronics.

[48]  Tae Hyun Kim A simple and real-time sensing of human serum albumin using antibody-modified CNT-FET , 2017, BioChip Journal.

[49]  Sven Mothes,et al.  Contact resistance extraction methods for short- and long-channel carbon nanotube field-effect transistors , 2016 .

[50]  M. Schroter,et al.  Multi-scale modeling of metal-CNT interfaces , 2015, 2015 International Workshop on Computational Electronics (IWCE).

[51]  Villamizar Gallardo,et al.  Biosensors based on carbon nanotube field effect transistors (cntfets) for detecting pathogenic microorganisms , 2009 .

[52]  Jana Zaumseil,et al.  Highly sensitive, selective and label-free protein detection in physiological solutions using carbon nanotube transistors with nanobody receptors , 2018 .

[53]  Filippo Parisi,et al.  Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites , 2018, Materials.

[54]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[55]  Hagen Klauk,et al.  Carbon‐Based Field‐Effect Transistors for Nanoelectronics , 2009, Advanced materials.

[56]  Md. Eaqub Ali,et al.  Can We Optimize Arc Discharge and Laser Ablation for Well-Controlled Carbon Nanotube Synthesis? , 2016, Nanoscale Research Letters.

[57]  Somenath Mitra,et al.  Mechanism of carbon nanotube growth by CVD , 2006 .

[58]  R. F. Broom,et al.  A quantitative model for doping contrast in the scanning electron microscope using calculated potential distributions and Monte Carlo simulations , 2011 .

[59]  Min Zhang,et al.  Aligned carbon nanotube field effect transistors by repeated compression-expansion cycles in Langmuir-Blodgett , 2017, 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO).

[60]  Junhong Chen,et al.  Field-Effect Transistor Biosensor for Rapid Detection of Ebola Antigen , 2017, Scientific Reports.

[61]  Tatsuro Goda and Yuji Miyahara,et al.  DNA Biosensing Using Field Effect Transistors , 2011 .

[62]  Dengjun Wang,et al.  Versatile transduction scheme based on electrolyte-gated organic field-effect transistor used as immunoassay readout system. , 2017, Biosensors & bioelectronics.

[63]  Colin Nuckolls,et al.  Debye screening in single-molecule carbon nanotube field-effect sensors. , 2011, Nano letters.

[64]  J. Tan,et al.  Metal–nanocarbon contacts , 2014 .

[65]  Ashok Mulchandani,et al.  Carbon nanotubes and graphene nano field-effect transistor-based biosensors , 2016 .

[66]  Samia Zrig,et al.  Electrolyte-gated organic field-effect transistors (EGOFETs) as complementary tools to electrochemistry for the study of surface processes , 2019, Electrochemistry Communications.

[67]  Peng Xiong,et al.  Multiple Schottky Barrier-Limited Field-Effect Transistors on a Single Silicon Nanowire with an Intrinsic Doping Gradient. , 2017, ACS applied materials & interfaces.

[68]  Shoushan Fan,et al.  Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode. , 2017, ACS applied materials & interfaces.

[69]  Gaurav Sapra SIMULATION AND ANALYSIS OF CNTFET BASED INVERTER , 2015 .

[70]  E. Park,et al.  A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. , 2018, Biosensors & bioelectronics.

[71]  Seokwoo Jeon,et al.  Analysis of contact resistance in single-walled carbon nanotube channel and graphene electrodes in a thin film transistor , 2017, Nano Convergence.

[72]  Nam Hoon Kim,et al.  Cu-Au nanocrystals functionalized carbon nanotube arrays vertically grown on carbon spheres for highly sensitive detecting cancer biomarker. , 2018, Biosensors & bioelectronics.

[73]  Carlos Duarte-Guevara,et al.  On-chip electrical detection of parallel loop-mediated isothermal amplification with DG-BioFETs for the detection of foodborne bacterial pathogens , 2016 .

[74]  E. Ifeachor,et al.  Label-Free Sensors Based on Graphene Field-Effect Transistors for the Detection of Human Chorionic Gonadotropin Cancer Risk Biomarker , 2018, Diagnostics.

[75]  Wei-En Hsu,et al.  Review-field-effect transistor biosensing: Devices and clinical applications , 2018 .

[76]  Harold G. Craighead,et al.  Fabrication of arrayed glassy carbon field emitters , 1997 .

[77]  Guojun Zhang,et al.  Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar MicroRNA detection. , 2015, Biosensors & bioelectronics.

[78]  Cees Dekker,et al.  Identifying the mechanism of biosensing with carbon nanotube transistors. , 2008, Nano letters.

[79]  M. Shariati,et al.  The field effect transistor DNA biosensor based on ITO nanowires in label-free hepatitis B virus detecting compatible with CMOS technology. , 2018, Biosensors & bioelectronics.

[80]  Viktor Bezugly,et al.  Chemiresistive biosensors based on carbon nanotubes for label-free detection of DNA sequences derived from avian influenza virus H5N1 , 2017 .

[81]  A. Salimi,et al.  Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film. , 2018, Analytica chimica acta.

[82]  Yeongjin Lim,et al.  Glucose sensor based on redox-cycling between selectively modified and unmodified combs of carbon interdigitated array nanoelectrodes. , 2015, Analytica chimica acta.

[83]  H.-S. Philip Wong,et al.  Hysteresis-Free Carbon Nanotube Field-Effect Transistors. , 2017, ACS nano.

[84]  Jie Chao,et al.  Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet. , 2017, Biosensors & bioelectronics.

[85]  Wendong Zhang,et al.  Progress of new label-free techniques for biosensors: a review , 2015, Critical reviews in biotechnology.

[86]  Olga E. Glukhova,et al.  Electronic Properties of the Functionalized Porous Glass-like Carbon , 2016 .

[87]  A. Salimi,et al.  An ultrasensitive detection of miRNA-155 in breast cancer via direct hybridization assay using two-dimensional molybdenum disulfide field-effect transistor biosensor. , 2018, Biosensors & bioelectronics.

[88]  W. Haensch,et al.  End-bonded contacts for carbon nanotube transistors with low, size-independent resistance , 2015, Science.

[89]  Jana Zaumseil,et al.  Label-Free Immunodetection in High Ionic Strength Solutions Using Carbon Nanotube Transistors with Nanobody Receptors , 2017 .

[90]  Rashmi Deka,et al.  Carbon Nanotube-Based Dual-Gated Junctionless Field-Effect Transistor for Acetylcholine Detection , 2016, IEEE Sensors Journal.

[91]  Kavita,et al.  DNA Biosensors-A Review , 2017 .

[92]  Kalpana Besar,et al.  Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules. , 2015, Journal of materials chemistry. C.

[93]  N. D. Cox,et al.  Enhanced Metal Contacts to Carbon Nanotube Networks through Chemical and Physical Modification , 2016 .

[94]  Changkun Dong,et al.  First-principles study of structural and work function properties for nitrogen-doped single-walled carbon nanotubes , 2016 .

[95]  Hong-Yu Chen,et al.  Low-Resistance Electrical Contact to Carbon Nanotubes With Graphitic Interfacial Layer , 2012, IEEE Transactions on Electron Devices.

[96]  Ivan I. Kravchenko,et al.  UV ozone treatment for improving contact resistance on graphene , 2012 .

[97]  Fayçal Djeffal,et al.  Atomistic Simulation of a New Label-Free DNA Nanosensor Based on Ballistic Carbon Nanotube Field-Effect Transistor , 2019, 2019 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS).

[98]  Chao Zhao,et al.  Enhanced End-Contacts by Helium Ion Bombardment to Improve Graphene-Metal Contacts , 2016, Nanomaterials.

[99]  Kyriaki Manoli,et al.  Low-picomolar, label-free procalcitonin analytical detection with an electrolyte-gated organic field-effect transistor based electronic immunosensor. , 2017, Biosensors & bioelectronics.

[100]  Zhihong Chen,et al.  Length scaling of carbon nanotube transistors. , 2010, Nature nanotechnology.

[101]  Jun-Hyun Oh,et al.  Development of Single-Walled Carbon Nanotube-Based Biosensor for the Detection of Staphylococcus aureus , 2017 .

[102]  In-Seok Yeo,et al.  Contact resistance between metal and carbon nanotube interconnects: Effect of work function and wettability , 2009 .

[103]  Li-Rong Zheng,et al.  A nanotube/polymer composite biosensing thin-film transistor platform for C-reactive protein detection , 2015, 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO).

[104]  A. Salimi,et al.  Label-free attomolar detection of lactate based on radio frequency sputtered of nickel oxide thin film field effect transistor. , 2017, Biosensors & bioelectronics.