Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators

Hysteresis poses a challenge for control of smart actuators. A fundamental approach to hysteresis control is inverse compensation. For practical implementation, it is desirable for the input function generated via inversion to have regularity properties stronger than continuity. In this paper, we consider the problem of constructing right inverses for the Preisach model for hysteresis. Under mild conditions on the density function, we show the existence and weak-star continuity of the right-inverse, when the Preisach operator is considered to act on Holder continuous functions. Next, we introduce the concept of regularization to study the properties of approximate inverse schemes for the Preisach operator. Then, we present the fixed point and closest-match algorithms for approximately inverting the Preisach operator. The convergence and continuity properties of these two numerical schemes are studied. Finally, we present the results of an open-loop trajectory tracking experiment for a magnetostrictive actuator.

[1]  Robert C. Rogers,et al.  Control of a hysteretic actuator using inverse hysteresis compensation , 1998, Smart Structures.

[2]  David W. L. Wang,et al.  Preisach model identification of a two-wire SMA actuator , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[3]  John S. Baras,et al.  Modeling and control of hysteresis in magnetostrictive actuators , 2004, Autom..

[4]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[5]  Pol D. Spanos,et al.  A Preisach model identification procedure and simulation of hysteresis in ferromagnets and shape-memory alloys , 2001 .

[6]  Ramakrishnan Venkataraman,et al.  Modeling and Adaptive Control of Magnetostrictive Actuators , 1999 .

[7]  Xiaobo Tan Control of Smart Actuators , 2002 .

[8]  A. Bukhgeǐm,et al.  Introduction to the Theory of Inverse Problems , 2000 .

[9]  I. Mayergoyz,et al.  Preisach modeling of magnetostrictive hysteresis , 1991 .

[10]  K. D. Joshi Introduction to General Topology , 1983 .

[11]  P. Wojtaszczyk Banach Spaces For Analysts: Preface , 1991 .

[12]  Ralph C. Smith Inverse compensation for hysteresis in magnetostrictive transducers , 2001 .

[13]  R.V. Iyer,et al.  Hysteresis parameter identification with limited experimental data , 2004, IEEE Transactions on Magnetics.

[14]  Santosh Devasia,et al.  Iterative feedforward compensation of hysteresis in piezo positioners , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[15]  R. Venkataraman,et al.  A Model for a Thin Magnetostrictive Actuator , 1998 .

[16]  R. Venkataraman,et al.  Approximate inversion of hysteresis: theory and numerical results [magnetostrictive actuator] , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[17]  Nonlinear functional analysis and its applications, part I: Fixed-point theorems , 1991 .

[18]  John T. Wen,et al.  Preisach modeling and compensation for smart material hysteresis , 1995, Other Conferences.

[19]  P. D. Spanosb,et al.  A Preisach model identification procedure and simulation of hysteresis in ferromagnets and shape-memory alloys , 2001 .

[20]  Xiaobo Tan,et al.  Control of hysteresis: theory and experimental results , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[21]  John S. Baras,et al.  Modeling and control of a magnetostrictive actuator , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[22]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[23]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[24]  Ram Venkataraman,et al.  On the identification of Preisach measures , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[25]  Gang Tao,et al.  Adaptive control of plants with unknown hystereses , 1995 .

[26]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .