An optimization-based approach to human body motion capture using inertial sensors

In inertial human motion capture, a multitude of body segments are equipped with inertial measurement units, consisting of 3D accelerometers, 3D gyroscopes and 3D magnetometers. Relative position and orientation estimates can be obtained using the inertial data together with a biomechanical model. In this work we present an optimization-based solution to magnetometer-free inertial motion capture. It allows for natural inclusion of biomechanical constraints, for handling of nonlinearities and for using all data in obtaining an estimate. As a proof-of-concept we apply our algorithm to a lower body configuration, illustrating that the estimates are drift-free and match the joint angles from an optical reference system.

[1]  P. Savage Strapdown Inertial Navigation Integration Algorithm Design Part 1: Attitude Algorithms , 1998 .

[2]  P. Savage STRAPDOWN INERTIAL NAVIGATION INTEGRATION ALGORITHM DESIGN. PART 2: VELOCITY AND POSITION ALGORITHMS , 1998 .

[3]  Jay H. Lee,et al.  Constrained linear state estimation - a moving horizon approach , 2001, Autom..

[4]  Greg Welch,et al.  Motion Tracking: No Silver Bullet, but a Respectable Arsenal , 2002, IEEE Computer Graphics and Applications.

[5]  Hendrik Johannes Luinge,et al.  Inertial sensing of human movement , 2002 .

[6]  Xiaoping Yun,et al.  Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking , 2006, IEEE Trans. Robotics.

[7]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[8]  Adrian Hilton,et al.  A survey of advances in vision-based human motion capture and analysis , 2006, Comput. Vis. Image Underst..

[9]  P H Veltink,et al.  Ambulatory measurement of arm orientation. , 2007, Journal of biomechanics.

[10]  John L. Crassidis,et al.  Survey of nonlinear attitude estimation methods , 2007 .

[11]  Robert Harle,et al.  Pedestrian localisation for indoor environments , 2008, UbiComp.

[12]  Xiaoji Niu,et al.  Analysis and Modeling of Inertial Sensors Using Allan Variance , 2008, IEEE Transactions on Instrumentation and Measurement.

[13]  K. Aminian,et al.  Ambulatory measurement of 3D knee joint angle. , 2008, Journal of biomechanics.

[14]  Thomas B. Schon,et al.  Tightly coupled UWB/IMU pose estimation , 2009, 2009 IEEE International Conference on Ultra-Wideband.

[15]  Diana Hodgins,et al.  Inertial sensor-based knee flexion/extension angle estimation. , 2009, Journal of biomechanics.

[16]  D. Roetenberg,et al.  Xsens MVN: Full 6DOF Human Motion Tracking Using Miniature Inertial Sensors , 2009 .

[17]  Stephen P. Boyd,et al.  Real-Time Convex Optimization in Signal Processing , 2010, IEEE Signal Processing Magazine.

[18]  Cyrill Stachniss,et al.  Hierarchical optimization on manifolds for online 2D and 3D mapping , 2010, 2010 IEEE International Conference on Robotics and Automation.

[19]  Diana Hodgins,et al.  Erratum to “Inertial sensor-based knee flexion/extension angle estimation” [J. Biomech. 42 (2009) 2678–2685] , 2010 .

[20]  Jeroen D. Hol,et al.  Sensor Fusion and Calibration of Inertial Sensors, Vision, Ultra-Wideband and GPS , 2011 .

[21]  정유진,et al.  Human Body Motion Capture System using Magnetic and Inertial Sensor Modules , 2011 .

[22]  Jonas Callmer,et al.  Autonomous Localization in Unknown Environments , 2013 .

[23]  Fredrik Gustafsson,et al.  Statistical Sensor Fusion , 2013 .

[24]  I-Ming Chen,et al.  3-D Localization of Human Based on an Inertial Capture System , 2013, IEEE Transactions on Robotics.