The solution of the equation AX+X★B=0
暂无分享,去创建一个
Froilán M. Dopico | Daniel Montealegre | Fernando De Terán | F. M. Dopico | F. Terán | Daniel Montealegre | N. Guillery | Nicolás Reyes | Nathan Guillery | Nicolás Reyes | F. Dopico
[1] Peter Lancaster,et al. The theory of matrices , 1969 .
[2] A. C. Aitken. CANONICAL FORMS FOR CONGRUENCE OF MATRICES: A TRIBUTE TO H. W. TURNBULL AND A. C. AITKEN∗ , 2010 .
[3] Daniel Kressner,et al. Implicit QR algorithms for palindromic and even eigenvalue problems , 2009, Numerical Algorithms.
[4] James Demmel,et al. The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I: theory and algorithms , 1993, TOMS.
[5] CLASSIFICATION PROBLEMS FOR SYSTEMS OF FORMS AND LINEAR MAPPINGS , 2005 .
[6] P. Dooren. The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .
[7] Mohamed A. Ramadan,et al. On the matrix equation x + AT root(2n, X-1)A = 1 , 2006, Appl. Math. Comput..
[8] P. Lancaster,et al. On the Matrix Equation $AX + X^ * A^ * = C$ , 1983 .
[9] Volker Mehrmann,et al. Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..
[10] Fernando De Ter. The solution of the equation XA + AX T = 0 and its application to the theory of orbits ∗ , 2010 .
[11] Fernando De Ter,et al. CONSISTENCY AND EFFICIENT SOLUTION OF THE SYLVESTER EQUATION FOR ⋆-CONGRUENCE , 2011 .
[12] Froilán M. Dopico,et al. THE EQUATION XA + AX ∗ = 0 AND THE DIMENSION OF ∗ CONGRUENCE ORBITS ∗ , 2011 .
[13] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[14] Olga Taussky,et al. On the matrix function Ax+X′A′ , 1962 .
[15] Froilán M. Dopico,et al. The solution of the equation XA + AXT = 0 and its application to the theory of orbits , 2011 .
[16] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[17] Henryk Minc,et al. On the Matrix Equation X′X = A , 1962, Proceedings of the Edinburgh Mathematical Society.
[18] Daniel Kressner,et al. Structured Condition Numbers for Invariant Subspaces , 2006, SIAM J. Matrix Anal. Appl..
[19] L. Mirsky,et al. The Theory of Matrices , 1961, The Mathematical Gazette.
[20] Dragan S. Djordjević,et al. Explicit solution of the operator equation A * X + X * A = B , 2007 .
[21] C. S. Ballantine. A note on the matrix equation H = AP + PA∗ , 1969 .
[22] F. R. Gantmakher. The Theory of Matrices , 1984 .
[23] James Demmel,et al. The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part II: software and applications , 1993, TOMS.
[24] H. W. Braden,et al. The Equations ATX\pm XTA=B , 1999, SIAM J. Matrix Anal. Appl..
[25] Harald K. Wimmer. Roth's theorems for matrix equations with symmetry constraints , 1994 .
[26] Roger A. Horn,et al. Canonical forms for complex matrix congruence and ∗congruence , 2006, 0709.2473.