Dynamics of the major plinian eruption of Samalas in 1257 A.D. (Lombok, Indonesia)

[1]  Karen Fontijn,et al.  A 5000-year record of multiple highly explosive mafic eruptions from Gunung Agung (Bali, Indonesia): implications for eruption frequency and volcanic hazards , 2015, Bulletin of Volcanology.

[2]  T. Hansteen,et al.  Sulfur budget and global climate impact of the A.D. 1835 eruption of Cosigüina volcano, Nicaragua , 2014 .

[3]  R. Sparks,et al.  New estimates of the 1815 Tambora eruption volume , 2014 .

[4]  M. Toohey,et al.  Insights from Antarctica on volcanic forcing during the Common Era , 2014 .

[5]  Luc Perreault,et al.  Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America , 2014, Proceedings of the National Academy of Sciences.

[6]  D. Pyle,et al.  AshCalc–a new tool for the comparison of the exponential, power-law and Weibull models of tephra deposition , 2014, Journal of Applied Volcanology.

[7]  B. Houghton,et al.  The 1800a Taupo eruption: “III wind” blows the ultraplinian type event down to Plinian , 2014 .

[8]  A. Takada,et al.  Eruptive Sequence of Rinjani Caldera, 13th Century, Lombok, Indonesia , 2014 .

[9]  J. Russell,et al.  A severe drought during the last millennium in East Java, Indonesia , 2013 .

[10]  Surono,et al.  Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia , 2013, Proceedings of the National Academy of Sciences.

[11]  R. Sparks,et al.  Quantifying uncertainties in the measurement of tephra fall thickness , 2013, Journal of Applied Volcanology.

[12]  Szabolcs Harangi,et al.  Origin and ascent history of unusually crystal-rich alkaline basaltic magmas from the western Pannonian Basin , 2013, Bulletin of Volcanology.

[13]  J. McConnell,et al.  Two likely stratospheric volcanic eruptions in the 1450s C.E. found in a bipolar, subannually dated 800 year ice core record , 2013 .

[14]  C. Bonadonna,et al.  Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function , 2013, Bulletin of Volcanology.

[15]  J. McConnell,et al.  A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years , 2013 .

[16]  C. Bonadonna,et al.  Determination of the largest clast sizes of tephra deposits for the characterization of explosive eruptions: a study of the IAVCEI commission on tephra hazard modelling , 2013, Bulletin of Volcanology.

[17]  P. Mayewski,et al.  An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu , 2012 .

[18]  C. Timmreck Modeling the climatic effects of large explosive volcanic eruptions , 2012 .

[19]  Martin Nayembil,et al.  Global database on large magnitude explosive volcanic eruptions (LaMEVE) , 2012, Journal of Applied Volcanology.

[20]  G. Walker The Waimihia and Hatepe plinian deposits from the rhyolitic Taupo Volcanic Centre , 2012 .

[21]  S. Charbonnier,et al.  The geological evolution of Merapi volcano, Central Java, Indonesia , 2012, Bulletin of Volcanology.

[22]  Costanza Bonadonna,et al.  Estimating the volume of tephra deposits: A new simple strategy , 2012 .

[23]  M. Holland,et al.  Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea‐ice/ocean feedbacks , 2012 .

[24]  A. Bernard,et al.  Bilan thermique et caractérisation géochimique de l'activité hydrothermale du volcan Rinjani, Lombok, Indonésie , 2010 .

[25]  B. Otto‐Bliesner,et al.  Climate response to large, high‐latitude and low‐latitude volcanic eruptions in the Community Climate System Model , 2009 .

[26]  G. Carazzo,et al.  On the rise of turbulent plumes : Quantitative effects of variable entrainment for submarine hydrothermal vents, terrestrial and extra terrestrial explosive volcanism , 2008 .

[27]  R. Evershed,et al.  Biomolecular characteristics of an extensive tar layer generated during eruption of the Soufrière Hills volcano, Montserrat, West Indies , 2008 .

[28]  D. Wark,et al.  SUPERVOLCANOES AND THEIR EXPLOSIVE SUPERERUPTIONS , 2008 .

[29]  R. Evershed,et al.  Temperature proxy data and their significance for the understanding of pyroclastic density currents , 2008 .

[30]  Boudewijn Ambrosius,et al.  A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries , 2007 .

[31]  A. Robock,et al.  Atmospheric volcanic loading derived from bipolar ice cores: Accounting for the spatial distribution of volcanic deposition , 2007 .

[32]  S. Self The effects and consequences of very large explosive volcanic eruptions , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  S. Self,et al.  The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release , 2006 .

[34]  R. Sulpizio Three empirical methods for the calculation of distal volume of tephra-fall deposits , 2005 .

[35]  Costanza Bonadonna,et al.  Total grain-size distribution and volume of tephra-fall deposits , 2005 .

[36]  Stephen Self,et al.  Magma volume, volatile emissions, and stratospheric aerosols from the 1815 eruption of Tambora , 2004 .

[37]  C. Oppenheimer Ice core and palaeoclimatic evidence for the timing and nature of the great mid‐13th century volcanic eruption , 2003 .

[38]  S. Andreastuti,et al.  A detailed tephrostratigraphic framework at Merapi Volcano, Central Java, Indonesia: implications for eruption predictions and hazard assessment , 2000 .

[39]  N. G. Banks,et al.  10,000 Years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications , 2000 .

[40]  A. Robock Volcanic eruptions and climate , 2000 .

[41]  R. S. J. Sparks,et al.  Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number , 1998 .

[42]  D. Pyle Assessment of the minimum volume of tephra fall deposits , 1995 .

[43]  A J Gow,et al.  Record of Volcanism Since 7000 B.C. from the GISP2 Greenland Ice Core and Implications for the Volcano-Climate System , 1994, Science.

[44]  J. Palais,et al.  Inter‐hemispheric Transport of Volcanic Ash from a 1259 A.D. Volcanic Eruption to the Greenland and Antarctic Ice Sheets , 1992 .

[45]  Marcus I. Bursik,et al.  Sedimentation of tephra by volcanic plumes: I. Theory and its comparison with a study of the Fogo A plinian deposit, Sao Miguel (Azores) , 1992 .

[46]  A. Woods,et al.  Dimensions and dynamics of co-ignimbrite eruption columns , 1991, Nature.

[47]  Christopher G. Newhall,et al.  Historical unrest at large calderas of the world , 1989 .

[48]  H. Sigurdsson,et al.  Plinian and co-ignimbrite tephra fall from the , 1989 .

[49]  R. Sparks,et al.  Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns , 1986 .

[50]  R. S. J. Sparks,et al.  The dimensions and dynamics of volcanic eruption columns , 1986 .

[51]  S. Self,et al.  Volcanological study of the great Tambora eruption of 1815 , 1984 .

[52]  Michael F. Sheridan,et al.  Hydrovolcanism: Basic considerations and review , 1983 .

[53]  S. Self,et al.  The October 1902 plinian eruption of Santa Maria volcano, Guatemala , 1983 .

[54]  S. Self,et al.  The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism , 1982 .

[55]  G. Walker The Taupo pumice: Product of the most powerful known (ultraplinian) eruption? , 1980 .

[56]  R. Sparks,et al.  The significance of vitric-enriched air-fall ashes associated with crystal-enriched ignimbrites , 1977 .

[57]  Lionel Wilson,et al.  A model for the formation of ignimbrite by gravitational column collapse , 1976, Journal of the Geological Society.

[58]  G. Walker Explosive volcanic eruptions — a new classification scheme , 1973 .

[59]  David M. Pyle,et al.  Chapter 13 – Sizes of Volcanic Eruptions , 2015 .

[60]  A. Schmidt,et al.  Volcanism, the atmosphere and climate through time , 2015 .

[61]  J. Russell,et al.  A paleolimnological record of rainfall and drought from East Java, Indonesia during the last 1,400 years , 2011, Journal of Paleolimnology.

[62]  A. Takada,et al.  Rinjani and Propok Volcanics as a Heat Sources of Geothermal Prospects from Eastern Lombok , Indonesia , 2009 .

[63]  B. Voight,et al.  Generation of a debris avalanche and violent pyroclastic density current on 26 December (Boxing Day) 1997 at Soufrière Hills Volcano, Montserrat , 2002, Geological Society, London, Memoirs.

[64]  Peter Kokelaar,et al.  Pyroclastic density currents and the sedimentation of ignimbrites , 2002 .

[65]  B. Voight,et al.  Small-volume, highly mobile pyroclastic flows formed by rapid sedimentation from pyroclastic surges at Soufrière Hills Volcano, Montserrat: an important volcanic hazard , 2002, Geological Society, London, Memoirs.

[66]  R. Stothers Climatic and Demographic Consequences of the Massive Volcanic Eruption of 1258 , 1999 .

[67]  S. Andreastuti Stratigraphy and geochemistry of Merapi Volcano, Central Java, Indonesia: Implication for assessment of volcanic hazards , 1999 .

[68]  M. Nathenson,et al.  Another look at the calculation of fallout tephra volumes , 1992 .

[69]  D. Pyle The thickness, volume and grainsize of tephra fall deposits , 1989 .