Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope

[1]  R. Hillenbrand,et al.  Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials. , 2017, Nano letters.

[2]  F. Guinea,et al.  Polaritons in layered two-dimensional materials. , 2016, Nature materials.

[3]  D. N. Basov,et al.  Polaritons in van der Waals materials , 2016, Science.

[4]  Ziyun Zhao,et al.  Surface-confined edge phonon polaritons in hexagonal boron nitride thin films and nanoribbons. , 2016, Optics express.

[5]  K. Kern,et al.  Wedge Dyakonov Waves and Dyakonov Plasmons in Topological Insulator Bi2Se3 Probed by Electron Beams. , 2016, ACS nano.

[6]  R. Hillenbrand,et al.  Nanofocusing of Hyperbolic Phonon Polaritons in a Tapered Boron Nitride Slab , 2016, 1805.00659.

[7]  Toshihiro Aoki,et al.  Damage-free vibrational spectroscopy of biological materials in the electron microscope , 2016, Nature Communications.

[8]  D. Ciudad,et al.  Gate-tunable diode and photovoltaic effect in an organic-2D layered material p-n junction. , 2015, Nanoscale.

[9]  Frank H. L. Koppens,et al.  Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity , 2015, Nature Photonics.

[10]  M. Polini,et al.  Accessing Phonon Polaritons in Hyperbolic Crystals by Angle-Resolved Photoemission Spectroscopy. , 2015, Physical review letters.

[11]  H. Bechtel,et al.  Amplitude- and Phase-Resolved Nanospectral Imaging of Phonon Polaritons in Hexagonal Boron Nitride , 2015 .

[12]  M. S. Skolnick,et al.  Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities , 2015, Nature Communications.

[13]  Phaedon Avouris,et al.  Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System. , 2015, Nano letters.

[14]  F. Keilmann,et al.  Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material , 2015, Nature Communications.

[15]  K. Novoselov,et al.  Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing , 2015, Nature Communications.

[16]  J. Dionne,et al.  Probing complex reflection coefficients in one-dimensional surface plasmon polariton waveguides and cavities using STEM EELS. , 2015, Nano letters.

[17]  E. Cojocaru Comparative analysis of Dyakonov hybrid surface waves at dielectric–elliptic and dielectric–hyperbolic media interfaces , 2014 .

[18]  P. Batson,et al.  Vibrational spectroscopy in the electron microscope , 2014, Nature.

[19]  Minghui Hong,et al.  Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride , 2014, Nature Communications.

[20]  A. H. Castro Neto,et al.  Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride , 2014, Science.

[21]  Shima Kadkhodazadeh,et al.  Extremely confined gap surface-plasmon modes excited by electrons , 2013, Nature Communications.

[22]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[23]  Michel Bosman,et al.  Electron-energy loss study of nonlocal effects in connected plasmonic nanoprisms. , 2013, ACS nano.

[24]  V. Podolskiy,et al.  Hyperbolic metamaterials: new physics behind a classical problem. , 2013, Optics express.

[25]  Niklas Dellby,et al.  Monochromated STEM with a 30 meV-wide, atom-sized electron probe. , 2013, Microscopy.

[26]  J. Barthb,et al.  Probe current , probe size , and the practical brightness for probe forming systems , 2013 .

[27]  Jan Kischkat,et al.  Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. , 2012, Applied optics.

[28]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[29]  E. Narimanov,et al.  Optical hyperspace for plasmons: Dyakonov states in metamaterials , 2008, 2009 IEEE LEOS Annual Meeting Conference Proceedings.

[30]  R. Egerton Electron energy-loss spectroscopy in the TEM , 2008 .

[31]  Ray F. Egerton,et al.  Electron Energy-Loss Spectroscopy , 1997, Microscopy and Microanalysis.

[32]  O. L. Krivanek,et al.  Sub-ångstrom resolution using aberration corrected electron optics , 2002, Nature.

[33]  R. H. Ritchie,et al.  Comment on "Near-Field Electron Energy Loss Spectroscopy of Nanoparticles" , 1999 .

[34]  R. Tenne,et al.  Near-Field Electron Energy Loss Spectroscopy of Nanoparticles , 1998 .

[35]  C. Oshima,et al.  PHONON DISPERSION OF AN EPITAXIAL MONOLAYER FILM OF HEXAGONAL BORON NITRIDE ON NI(111) , 1997 .

[36]  R. Egerton,et al.  Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.

[37]  D. Muller,et al.  Delocalization in inelastic scattering , 1995 .

[38]  A. Howie,et al.  Dielectric theory of localised valence energy loss spectroscopy , 1989 .

[39]  U. Valdré,et al.  Surface and Interface Characterization by Electron Optical Methods , 1989 .

[40]  J. W. Little,et al.  Surface-plasmon excitation during aloof scattering of low-energy electrons in micropores in a thin metal foil , 1984 .

[41]  A. Lucas,et al.  Theory of electron energy loss spectroscopy from surfaces of anisotropic materials , 1984 .

[42]  J. Silcox,et al.  Calculations of the electron-energy-loss probability in thin uniaxial crystals at oblique incidence , 1979 .

[43]  D. Heitmann Excitation of guided waves by fast electrons , 1978 .

[44]  J. Pendry,et al.  Absorption profile at surfaces , 1975 .

[45]  J. Silcox,et al.  Detection of Optical Surface Guided Modes in Thin Graphite Films by High-Energy Electron Scattering , 1975 .

[46]  A. Lucas,et al.  Fast-electron spectroscopy of collective excitations in solids , 1972 .

[47]  A. Lucas,et al.  Energy-Loss Spectrum of Fast Electrons in a Dielectric Slab. I. Nonretarded Losses and Cherenkov Bulk Loss , 1970 .

[48]  C. H. Perry,et al.  Normal Modes in Hexagonal Boron Nitride , 1966 .

[49]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[50]  H. Boersch,et al.  Experimentelle Bestimmung der Energieverteilung in thermisch ausgelösten Elektronenstrahlen , 1954 .