Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope
暂无分享,去创建一个
J. Aizpurua | R. Hillenbrand | A. Chuvilin | A. Nikitin | S. Vélez | F. Casanova | L. Hueso | A. Govyadinov | A. Konečná | I. Dolado | S. Lopatin
[1] R. Hillenbrand,et al. Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials. , 2017, Nano letters.
[2] F. Guinea,et al. Polaritons in layered two-dimensional materials. , 2016, Nature materials.
[3] D. N. Basov,et al. Polaritons in van der Waals materials , 2016, Science.
[4] Ziyun Zhao,et al. Surface-confined edge phonon polaritons in hexagonal boron nitride thin films and nanoribbons. , 2016, Optics express.
[5] K. Kern,et al. Wedge Dyakonov Waves and Dyakonov Plasmons in Topological Insulator Bi2Se3 Probed by Electron Beams. , 2016, ACS nano.
[6] R. Hillenbrand,et al. Nanofocusing of Hyperbolic Phonon Polaritons in a Tapered Boron Nitride Slab , 2016, 1805.00659.
[7] Toshihiro Aoki,et al. Damage-free vibrational spectroscopy of biological materials in the electron microscope , 2016, Nature Communications.
[8] D. Ciudad,et al. Gate-tunable diode and photovoltaic effect in an organic-2D layered material p-n junction. , 2015, Nanoscale.
[9] Frank H. L. Koppens,et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity , 2015, Nature Photonics.
[10] M. Polini,et al. Accessing Phonon Polaritons in Hyperbolic Crystals by Angle-Resolved Photoemission Spectroscopy. , 2015, Physical review letters.
[11] H. Bechtel,et al. Amplitude- and Phase-Resolved Nanospectral Imaging of Phonon Polaritons in Hexagonal Boron Nitride , 2015 .
[12] M. S. Skolnick,et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities , 2015, Nature Communications.
[13] Phaedon Avouris,et al. Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System. , 2015, Nano letters.
[14] F. Keilmann,et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material , 2015, Nature Communications.
[15] K. Novoselov,et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing , 2015, Nature Communications.
[16] J. Dionne,et al. Probing complex reflection coefficients in one-dimensional surface plasmon polariton waveguides and cavities using STEM EELS. , 2015, Nano letters.
[17] E. Cojocaru. Comparative analysis of Dyakonov hybrid surface waves at dielectric–elliptic and dielectric–hyperbolic media interfaces , 2014 .
[18] P. Batson,et al. Vibrational spectroscopy in the electron microscope , 2014, Nature.
[19] Minghui Hong,et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride , 2014, Nature Communications.
[20] A. H. Castro Neto,et al. Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride , 2014, Science.
[21] Shima Kadkhodazadeh,et al. Extremely confined gap surface-plasmon modes excited by electrons , 2013, Nature Communications.
[22] Vibhor Singh,et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.
[23] Michel Bosman,et al. Electron-energy loss study of nonlocal effects in connected plasmonic nanoprisms. , 2013, ACS nano.
[24] V. Podolskiy,et al. Hyperbolic metamaterials: new physics behind a classical problem. , 2013, Optics express.
[25] Niklas Dellby,et al. Monochromated STEM with a 30 meV-wide, atom-sized electron probe. , 2013, Microscopy.
[26] J. Barthb,et al. Probe current , probe size , and the practical brightness for probe forming systems , 2013 .
[27] Jan Kischkat,et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. , 2012, Applied optics.
[28] F. D. Abajo,et al. Optical excitations in electron microscopy , 2009, 0903.1669.
[29] E. Narimanov,et al. Optical hyperspace for plasmons: Dyakonov states in metamaterials , 2008, 2009 IEEE LEOS Annual Meeting Conference Proceedings.
[30] R. Egerton. Electron energy-loss spectroscopy in the TEM , 2008 .
[31] Ray F. Egerton,et al. Electron Energy-Loss Spectroscopy , 1997, Microscopy and Microanalysis.
[32] O. L. Krivanek,et al. Sub-ångstrom resolution using aberration corrected electron optics , 2002, Nature.
[33] R. H. Ritchie,et al. Comment on "Near-Field Electron Energy Loss Spectroscopy of Nanoparticles" , 1999 .
[34] R. Tenne,et al. Near-Field Electron Energy Loss Spectroscopy of Nanoparticles , 1998 .
[35] C. Oshima,et al. PHONON DISPERSION OF AN EPITAXIAL MONOLAYER FILM OF HEXAGONAL BORON NITRIDE ON NI(111) , 1997 .
[36] R. Egerton,et al. Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.
[37] D. Muller,et al. Delocalization in inelastic scattering , 1995 .
[38] A. Howie,et al. Dielectric theory of localised valence energy loss spectroscopy , 1989 .
[39] U. Valdré,et al. Surface and Interface Characterization by Electron Optical Methods , 1989 .
[40] J. W. Little,et al. Surface-plasmon excitation during aloof scattering of low-energy electrons in micropores in a thin metal foil , 1984 .
[41] A. Lucas,et al. Theory of electron energy loss spectroscopy from surfaces of anisotropic materials , 1984 .
[42] J. Silcox,et al. Calculations of the electron-energy-loss probability in thin uniaxial crystals at oblique incidence , 1979 .
[43] D. Heitmann. Excitation of guided waves by fast electrons , 1978 .
[44] J. Pendry,et al. Absorption profile at surfaces , 1975 .
[45] J. Silcox,et al. Detection of Optical Surface Guided Modes in Thin Graphite Films by High-Energy Electron Scattering , 1975 .
[46] A. Lucas,et al. Fast-electron spectroscopy of collective excitations in solids , 1972 .
[47] A. Lucas,et al. Energy-Loss Spectrum of Fast Electrons in a Dielectric Slab. I. Nonretarded Losses and Cherenkov Bulk Loss , 1970 .
[48] C. H. Perry,et al. Normal Modes in Hexagonal Boron Nitride , 1966 .
[49] R. H. Ritchie. Plasma Losses by Fast Electrons in Thin Films , 1957 .
[50] H. Boersch,et al. Experimentelle Bestimmung der Energieverteilung in thermisch ausgelösten Elektronenstrahlen , 1954 .