A Geometric Theory for Synthesis and Analysis of Sub-6 DoF Parallel Manipulators

This paper presents a rigorous and precise geometric theory for the analysis and synthesis of sub-6 DoF parallel manipulators. We give a rigorous definition for the parallel manipulator synthesis problem, and introduce a general method for specifying the corresponding subchains which will result in the desired parallel manipulator. Following this, a procedure for solving the parallel manipulator synthesis problem is proposed when the set of desired end-effector motions is in the form of Lie subgroup or a regular submanifold of SE(3). Numerous examples are used to illustrate the generality and effectiveness of the proposed synthesis method.

[1]  Zexiang Li,et al.  A Geometric Theory for Synthesis and Analysis of Sub-6 DoF Serial Manipulator Subchains , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[2]  Lung-Wen Tsai,et al.  Kinematics of A Three-Dof Platform with Three Extensible Limbs , 1996 .

[3]  Janusz,et al.  Geometrical Methods in Robotics , 1996, Monographs in Computer Science.

[4]  Q. C. Li,et al.  General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators , 2002, Int. J. Robotics Res..

[5]  Clément Gosselin,et al.  On the Kinematic Design of Spherical Three-Degree-of- Freedom Parallel Manipulators , 1993, Int. J. Robotics Res..

[6]  Clément Gosselin,et al.  Stiffness mapping for parallel manipulators , 1990, IEEE Trans. Robotics Autom..

[7]  Clément Gosselin,et al.  A Global Performance Index for the Kinematic Optimization of Robotic Manipulators , 1991 .

[8]  R. Clavel,et al.  A Fast Robot with Parallel Geometry , 1988 .

[9]  Vijay Kumar,et al.  Instantaneous Kinematics of Parallel-Chain Robotic Mechanisms , 1992 .

[10]  O. Company,et al.  H4: a new family of 4-DOF parallel robots , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[11]  Roger W. Brockett,et al.  Kinematic Dexterity of Robotic Mechanisms , 1994, Int. J. Robotics Res..

[12]  A. W. Knapp Lie groups beyond an introduction , 1988 .

[13]  François Pierrot,et al.  H4 parallel robot: modeling, design and preliminary experiments , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[14]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[15]  Hui Zhao,et al.  A novel 5-DOF fully parallel kinematic machine tool , 2006 .

[16]  Jean-Pierre Merlet,et al.  Singular Configurations of Parallel Manipulators and Grassmann Geometry , 1988, Int. J. Robotics Res..

[17]  J. M. Hervé,et al.  Structural synthesis of 'parallel' robots generating spatial translation , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[18]  Zexiang Li,et al.  Singularities of parallel manipulators: a geometric treatment , 2003, IEEE Trans. Robotics Autom..

[19]  Clément Gosselin,et al.  Singularity analysis of closed-loop kinematic chains , 1990, IEEE Trans. Robotics Autom..

[20]  Jean-Pierre Merlet,et al.  Direct kinematics of parallel manipulators , 1993, IEEE Trans. Robotics Autom..

[21]  C. Gosselin Determination of the Workspace of 6-DOF Parallel Manipulators , 1990 .

[22]  J. Angeles The Qualitative Synthesis of Parallel Manipulators , 2004 .

[23]  Pavel Winternitz,et al.  Subgroups of the Euclidean group and symmetry breaking in nonrelativistic quantum mechanics , 1977 .

[24]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[25]  Qinchuan Li,et al.  Type synthesis of 3R2T 5-DOF parallel mechanisms using the Lie group of displacements , 2004, IEEE Transactions on Robotics and Automation.

[26]  C. Gosselin,et al.  The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator , 1988 .

[27]  Septimiu E. Salcudean,et al.  Optimal kinematic design of a haptic pen , 2001 .

[28]  F. Park,et al.  Singularity Analysis of Closed Kinematic Chains , 1999 .

[29]  Hui Zhao,et al.  New kinematic structures for 2-, 3-, 4-, and 5-DOF parallel manipulator designs , 2002 .