Siderophore production byBradyrhizobium spp. strains nodulating groundnut

[1]  A. Desai,et al.  Isolation and characterization of siderophore from cowpeaRhizobium (peanut isolate) , 1992, Current Microbiology.

[2]  F. Boogerd,et al.  Soil acidity in relation to groundnut-Bradyrhizobium symbiotic performance , 1994, Plant and Soil.

[3]  F. Boogerd,et al.  Effects of Bradyrhizobium strain and host genotype, nodule dry weight and leaf area on groundnut (Arachis hypogaea L. ssp. fastigiata) yield , 1993, Plant and Soil.

[4]  Caixian Tang,et al.  Inadequate iron supply and high bicarbonate impair the symbiosis of peanuts (Arachis hypogaea L.) with different Bradyrhizobium strains , 1991, Plant and Soil.

[5]  V. Modi,et al.  Isolation and characterisation of catechol-like siderophore from cowpea Rhizobium RA-1 , 1985, Archives of Microbiology.

[6]  V. Römheld,et al.  Factors affecting cation-anion uptake balance and iron acquisition in peanut plants grown on calcareous soils , 2004, Plant and Soil.

[7]  L. Barton,et al.  A high-affinity iron transport system of Rhizobium meliloti may be required for efficient nitrogen fixation in planta , 2004, Plant and Soil.

[8]  M. Guerinot Iron uptake and metabolism in the rhizobia/legume symbioses , 2004, Plant and Soil.

[9]  C. Reid,et al.  Mechanisms of iron acquisition from siderophores by microorganisms and plants , 2004, Plant and Soil.

[10]  A. G. Wollum,et al.  Nodulation competition among Bradyrhizobium japonicum strains as influenced by rhizosphere bacteria and iron availability , 2004, Biology and Fertility of Soils.

[11]  M. Dilworth,et al.  Siderophore and organic acid production in root nodule bacteria , 2004, Archives of Microbiology.

[12]  M. Summit Ecological Significance of the , 2000 .

[13]  A. Desai,et al.  Role of siderophore in iron uptake in cowpea Rhizobium GN1 (peanut isolate): Possible involvement of iron repressible outer membrane proteins , 1994 .

[14]  D. Singh,et al.  Effects of phosphate carriers, iron, and indoleacetic acid on iron nutrition and productivity of peanut on a calcareous soil , 1993 .

[15]  H. G. Diem,et al.  Iron requirement and siderophore production in Bradyrhizobium strains isolated from Acacia mangium , 1993 .

[16]  M. Guerinot,et al.  Citrate as a siderophore in Bradyrhizobium japonicum , 1990, Journal of bacteriology.

[17]  B. Christie,et al.  Use of the Chrome Azurol S Agar Plate Technique To Differentiate Strains and Field Isolates of Rhizobium leguminosarum biovar trifolii , 1989, Applied and environmental microbiology.

[18]  A. G. Wollum,et al.  In vitro growth responses of Bradyrhizobium japonicum to soybean rhizosphere bacteria , 1989 .

[19]  R. Bell,et al.  Response to bradyrhizobium strain of peanut cultivars grown under iron stress , 1988 .

[20]  Y. Hadar,et al.  Involvement of Bacterial Siderophores in the Remedy of Lime‐induced Chlorosis in Peanut , 1988 .

[21]  R. Terry,et al.  Interactions of iron nutrition and symbiotic nitrogen fixation in peanuts , 1988 .

[22]  M. Dilworth,et al.  Iron-deficiency specifically limits nodule development in peanut inoculated with Bradyrhizobium sp. , 1988, The New phytologist.

[23]  W. Verstraete,et al.  Ecological Significance of Siderophores in Soil , 1988 .

[24]  S. Sivaramakrishnan,et al.  Detection and assay of siderophores in cowpea rhizobia (Bradyrhizobium) using radioactive Fe (59Fe) , 1987 .

[25]  K. Barker,et al.  The occurrence of phytoferritin and its relationship to effectiveness of soybean nodules. , 1987, Plant physiology.

[26]  J. Neilands,et al.  Universal chemical assay for the detection and determination of siderophores. , 1987, Analytical biochemistry.

[27]  P. Nambiar Response of groundnut (Arachis hypogaea L) toRhizobium inoculation in the field: Problems and prospects , 1985 .

[28]  L. N. Ornston,et al.  Nutritional diversity of Rhizobiaceae revealed by auxanography , 1984 .

[29]  P. Dart,et al.  Response of groundnut (Arachis hypogaea L.) to Rhizobium inoculation , 1984 .

[30]  M. Redinbaugh,et al.  Reduction of ferric citrate catalyzed by NADH:nitrate reductase. , 1983, Biochemical and biophysical research communications.

[31]  V. Römheld,et al.  Mechanism of iron uptake by peanut plants : I. Fe reduction, chelate splitting, and release of phenolics. , 1983, Plant physiology.

[32]  L. O. Tiffin Translocation of iron citrate and phosphorus in xylem exudate of soybean. , 1970, Plant physiology.

[33]  O. N. Allen,et al.  Response of the Peanut Plant to Inoculation with Rhizobia, with Special Reference to Morphological Development of the Nodules , 1940, Botanical Gazette.