Urban Land Use and Land Cover Classification Using Multisource Remote Sensing Images and Social Media Data

[1]  D. Amarsaikhan,et al.  Fusing high-resolution SAR and optical imagery for improved urban land cover study and classification , 2010 .

[2]  Xiaoping Liu,et al.  High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform , 2018 .

[3]  P. Atkinson,et al.  Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture , 2012 .

[4]  Xiaoping Liu,et al.  Delineating urban functional areas with building-level social media data: A dynamic time warping (DTW) distance based k-medoids method , 2017 .

[5]  Yifang Ban,et al.  Fusion of Quickbird MS and RADARSAT SAR data for urban land-cover mapping: object-based and knowledge-based approach , 2010 .

[6]  Guangwei Song,et al.  A method of measuring the semantic gap in image retrieval: Using the information theory , 2011, 2011 International Conference on Image Analysis and Signal Processing.

[7]  Rongke Liu,et al.  SAR Image Despeckling Using Refined Lee Filter , 2015, 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics.

[8]  Anil K. Jain,et al.  Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images , 1994, IEEE Trans. Geosci. Remote. Sens..

[9]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[10]  Yunpeng Wang,et al.  Investigating the Impacts of Landuse-landcover (LULC) Change in the Pearl River Delta Region on Water Quality in the Pearl River Estuary and Hong Kong's Coast , 2009, Remote. Sens..

[11]  Paul M. Mather,et al.  An assessment of the effectiveness of decision tree methods for land cover classification , 2003 .

[12]  Craig A. Coburn,et al.  A multiscale texture analysis procedure for improved forest stand classification , 2004 .

[13]  J. Qi,et al.  Developing land use/land cover parameterization for climate–land modelling in East Africa , 2006 .

[14]  Xiaoping Liu,et al.  A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects , 2017 .

[15]  S. Carpenter,et al.  Global Consequences of Land Use , 2005, Science.

[16]  D. Lu,et al.  Use of impervious surface in urban land-use classification , 2006 .

[17]  Antonio Iodice,et al.  Sentinel-1 multitemporal SAR products , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[18]  J. W. Bruce,et al.  The causes of land-use and land-cover change: moving beyond the myths , 2001 .

[19]  Dedao Gu,et al.  Urban Big Data and the Development of City Intelligence , 2016 .

[20]  Peng Gong,et al.  Mapping Urban Land Use by Using Landsat Images and Open Social Data , 2016, Remote. Sens..

[21]  Donna K. Slonim,et al.  Lack of nAChR Activity Depresses Cochlear Maturation and Up-Regulates GABA System Components: Temporal Profiling of Gene Expression in α9 Null Mice , 2010, PloS one.

[22]  Haihong Zhu,et al.  Land Cover Extraction from High Resolution ZY-3 Satellite Imagery Using Ontology-Based Method , 2016, ISPRS Int. J. Geo Inf..

[23]  Onisimo Mutanga,et al.  Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers , 2014 .

[24]  Xiaoping Liu,et al.  Classifying urban land use by integrating remote sensing and social media data , 2017, Int. J. Geogr. Inf. Sci..

[25]  Nikos Koutsias,et al.  Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site , 2008 .

[26]  Wenzhong Shi,et al.  A Random Forests classification method for urban land-use mapping integrating spatial metrics and texture analysis , 2018 .

[27]  S. M. Jong,et al.  Investigating relationships between Landsat-7 ETM + data and spatial segregation of LULC types under shifting agriculture in southern Cameroon , 2006 .

[28]  Xuan Zhu,et al.  Automatic land cover classification of geo-tagged field photos by deep learning , 2017, Environ. Model. Softw..

[29]  Qihao Weng,et al.  Land Use and Land Cover Change in Guangzhou, China, from 1998 to 2003, Based on Landsat TM /ETM+ Imagery , 2007, Sensors (Basel, Switzerland).

[30]  S. K. Saha,et al.  Multi-resolution segmentation for object-based classification and accuracy assessment of land use/land cover classification using remotely sensed data , 2008 .

[31]  Ross Purves,et al.  Exploring place through user-generated content: Using Flickr tags to describe city cores , 2010, J. Spatial Inf. Sci..

[32]  Xia Li,et al.  A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data , 2012 .