Synergistic use of very high-frequency radar and discrete-return lidar for estimating biomass in temperate hardwood and mixed forests

Abstract• IntroductionAccurate estimation of aboveground biomass is essential to better understand the carbon cycle in forest ecosystems.• MethodsThe objective of this study was to determine whether biomass in temperate hardwood forests is better estimated using very high-frequency radar data (from BioSAR) alone or in combination with small-footprint discrete-return lidar data (both profiling and scanning). The study area was in the Appomattox-Buckingham State Forest, Virginia, USA (78°41′W, 37°25′N). Aboveground biomass for 28 stands was estimated using 131 basal area factor 10 point samples. The resulting stand biomass estimates were used as the dependent variable in a multiple linear regression. Descriptors of the lidar distributions (both profiling and scanning) and averaged normalized radar cross-sections in each of these stands were used as independent variables.• ResultsRegression results revealed the following: (1) neither BioSAR nor scanning lidar data alone are good predictors of stand biomass (R2 = 0.57, root mean squared error (RMSE) = 31.0 tonnes/ha and R2 = 0.64, RMSE = 28.5 tonnes/ha, respectively); (2) BioSAR data combined with small-footprint discrete lidar data (either profiling or scanning) are the best predictors of stand biomass (R2 = 0.80, RMSE = 21.3 tonnes/ha and R2 = 0.76, RMSE = 24.2 tonnes/ha, respectively); and (3) when used with BioSAR data for stand biomass estimation, less costly profiling lidar data convey the same information as more costly scanning lidar data.• ConclusionUseful synergy can be realized by considering lidar and radar measurements jointly in estimating aboveground biomass in hardwood and mixed forests.

[1]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[2]  Lars M. H. Ulander,et al.  Estimation of forest parameters using CARABAS-II VHF SAR data , 2000, IEEE Trans. Geosci. Remote. Sens..

[3]  S. Popescu,et al.  Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .

[4]  Lars M. H. Ulander,et al.  Retrieval of forest stem volume using VHF SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[5]  Ross Nelson,et al.  Exploring LiDAR–RaDAR synergy—predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR , 2007 .

[6]  Xianyun Luo,et al.  Low VHF-band backscatter from coniferous forests on sloping terrain , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Randolph H. Wynne,et al.  Estimating forest biomass using small footprint LiDAR data: An individual tree-based approach that incorporates training data , 2005 .

[8]  R. Dubayah,et al.  Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships , 2003 .

[9]  Lars M. H. Ulander,et al.  Measurements on individual trees using multiple VHF SAR images , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[10]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[11]  John A. Scrivani,et al.  Lidar-based Mapping of Forest Volume and Biomass by Taxonomic Group Using Structurally Homogenous Segments , 2008 .

[12]  Emilio Chuvieco,et al.  Aboveground biomass assessment in Colombia: a remote sensing approach. , 2009 .

[13]  Zhanqing Li,et al.  Estimating fire-related parameters in boreal forest using SPOT VEGETATION , 2002 .

[14]  Brendan Mackey,et al.  Estimating forest biomass using satellite radar: an exploratory study in a temperate Australian Eucalyptus forest , 2003 .

[15]  Richard M. Lucas,et al.  Microwave scattering from mixed-species forests, Queensland, Australia , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[16]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[17]  Richard G. Oderwald,et al.  Forest Volume and Biomass Estimation Using Small-Footprint Lidar-Distributional Parameters on a Per-Segment Basis , 2006 .

[18]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[19]  Randolph H. Wynne,et al.  Fusion of Small-Footprint Lidar and Multispectral Data to Estimate Plot- Level Volume and Biomass in Deciduous and Pine Forests in Virginia, USA , 2004, Forest Science.

[20]  M. Batistella,et al.  Exploring TM Image Texture and its Relationships with Biomass Estimation in Rondônia, Brazilian Amazon. , 2005 .

[21]  M. Honzak,et al.  Tropical Forest Biomass Density Estimation Using JERS-1 SAR: Seasonal Variation, Confidence Limits, and Application to Image Mosaics , 1998 .

[22]  Giles M. Foody,et al.  The relationship between the biomass of Cameroonian tropical forests and radiation reflected in middle infrared wavelengths (3.0-5.0 mu m) , 1999 .

[23]  Robert B. Waide,et al.  Tropical forest biomass and successional age class relationships to a vegetation index derived from Landsat TM data , 1989 .

[24]  João Roberto dos Santos,et al.  Savanna and tropical rainforest biomass estimation and spatialization using JERS-1 data , 2002 .

[25]  Eric S. Kasischke,et al.  Evaluation of approaches to estimating aboveground biomass in Southern pine forests using SIR-C data☆ , 1997 .

[26]  J. Martonchik,et al.  Large area mapping of southwestern forest crown cover, canopy height, and biomass using the NASA Multiangle Imaging Spectro-Radiometer , 2008 .

[27]  D. Lu Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon , 2005 .

[28]  D. Roberts,et al.  Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape , 2004 .

[29]  W. Cohen,et al.  Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA , 1999 .

[30]  G. Foody,et al.  Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions , 2003 .

[31]  Patrick D. Johnson,et al.  Investigating RaDAR–LiDAR synergy in a North Carolina pine forest , 2007 .

[32]  C. Tucker,et al.  Tropical Deforestation and Habitat Fragmentation in the Amazon: Satellite Data from 1978 to 1988 , 1993, Science.

[33]  Derek R. Peddle,et al.  A Comparison of Spectral Mixture Analysis and Ten Vegetation Indices for Estimating Boreal Forest Biophysical Information from Airborne Data , 2001 .

[34]  Patrick Johnson,et al.  BioSARTM: an inexpensive airborne VHF multiband SAR system for vegetation biomass measurement , 2000, IEEE Trans. Geosci. Remote. Sens..

[35]  Marc L. Imhoff,et al.  Radar backscatter and biomass saturation: ramifications for global biomass inventory , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[36]  J. Means Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon , 1999 .

[37]  S. Popescu,et al.  Lidar remote sensing of forest biomass : A scale-invariant estimation approach using airborne lasers , 2009 .

[38]  M. Steininger Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and Bolivia , 2000 .