Scalable and Distributed Contention Resolution in AWGR-Based Data Center Switches Using RSOA-Based Optical Mutual Exclusion

We describe a mutual exclusion element using a reflective semiconductor optical amplifier (RSOA) and a simple scheme for contention resolution in arrayed waveguide grating router (AWGR)-based optical switches in data centers. We describe a hardware demonstration and detailed performance analysis of an AWGR-based optical switch based on the proposed concept. We show that the proposed RSOA-based contention resolution significantly reduces latency compared to existing methods and that it does not require any global or centralized coordination, which makes it inherently scalable and suitable for emerging data center networks.

[1]  D. Scott Wills,et al.  The Data Vortex, an All Optical Path Multicomputer Interconnection Network , 2007, IEEE Transactions on Parallel and Distributed Systems.

[2]  Cyriel Minkenberg,et al.  Designing a Crossbar Scheduler for HPC Applications , 2006, IEEE Micro.

[3]  Martin Reisslein,et al.  The arrayed-waveguide grating-based single-hop WDM network: an architecture for efficient multicasting , 2003, IEEE J. Sel. Areas Commun..

[4]  Stefano Bregni,et al.  Architectures and performance of AWG-based optical switching nodes for IP networks , 2003, IEEE J. Sel. Areas Commun..

[5]  S. Matsuo,et al.  Microring-Resonator-Based Widely Tunable Lasers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  Biswanath Mukherjee,et al.  Passive optical network architecture based on waveguide grating routing , 1998, IEEE J. Sel. Areas Commun..

[7]  S.J.B. Yoo,et al.  Combined input and output all-optical variable buffered switch architecture for future optical routers , 2005, IEEE Photonics Technology Letters.

[8]  R. Luijten,et al.  An Optical Packet-Switched Interconnect for Supercomputer Applications ∗ , 2004 .

[9]  Dongvu Tonien,et al.  Birthday Paradox for Multi-Collisions , 2008, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[10]  Mark A. Franklin,et al.  Gemini: An Optical Interconnection Network for Parallel Processing , 2002, IEEE Trans. Parallel Distributed Syst..

[11]  황성택,et al.  Reflective semiconductor optical amplifier , 2004 .

[12]  Ronald P. Luijten,et al.  Optical-packet-switched interconnect for supercomputer applications[Invited] , 2004 .

[13]  Ahmed Louri,et al.  A Class of Highly Scalable Optical Crossbar-Connected Interconnection Networks (SOCNs) for Parallel Computing Systems , 2000, IEEE Trans. Parallel Distributed Syst..

[14]  Edsger W. Dijkstra,et al.  Solution of a problem in concurrent programming control , 1965, CACM.

[15]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[16]  S. J. B. Yoo,et al.  All-Optical Physical Layer NACK in AWGR-Based Optical Interconnects , 2012, IEEE Photonics Technology Letters.

[17]  Roberto Proietti,et al.  DOS - A scalable optical switch for datacenters , 2010, 2010 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS).

[18]  Ahmed Louri,et al.  An optical interconnection network and a modified snooping protocol for the design of large-scale symmetric multiprocessors (SMPs) , 2004, IEEE Transactions on Parallel and Distributed Systems.

[19]  Amin Vahdat,et al.  A scalable, commodity data center network architecture , 2008, SIGCOMM '08.

[20]  Ashok V. Krishnamoorthy,et al.  Computer Systems Based on Silicon Photonic Interconnects A proposed supercomputer-on-a-chip with optical interconnections between processing elements will require development of new lower-energy optical components and new circuit architectures that match electrical datapaths to complementary optical , 2009 .

[21]  William J. Dally,et al.  Flattened butterfly: a cost-efficient topology for high-radix networks , 2007, ISCA '07.

[22]  K. Bergman,et al.  The Data Vortex Optical Packet Switched Interconnection Network , 2008, Journal of Lightwave Technology.

[23]  R. Proietti,et al.  Buffering and Flow Control in Optical Switches for High Performance Computing , 2011, IEEE/OSA Journal of Optical Communications and Networking.

[24]  S. Chandrasekhar,et al.  Dependence of coherent crosstalk penalty on the OSNR of the signal , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[25]  S.J.B. Yoo,et al.  Optical Packet and Burst Switching Technologies for the Future Photonic Internet , 2006, Journal of Lightwave Technology.

[26]  Chun-Kit Chan,et al.  A fast 100-channel wavelength-tunable transmitter for optical packet switching , 2001, IEEE Photonics Technology Letters.

[27]  Hong Liu,et al.  Energy proportional datacenter networks , 2010, ISCA.

[28]  G. Eisenstein Semiconductor optical amplifiers , 1989, IEEE Circuits and Devices Magazine.

[29]  Rodney S. Tucker,et al.  Wavelength routing-based photonic packet buffers and their applications in photonic packet switching systems , 1998 .

[30]  Ming Zhang,et al.  Understanding data center traffic characteristics , 2010, CCRV.