Accurate and Fast Evaluation of Elementary Symmetric Functions

This paper is concerned with the fast and accurate evaluation of elementary symmetric functions. We present a new compensated algorithm by applying error-free transformations to improve the accuracy of the so-called Summation Algorithm, which is used, by example, in the MATLAB's poly function. We derive a forward round off error bound and running error bound for our new algorithm. The round off error bound implies that the computed result is as accurate as if computed with twice the working precision and then rounded to the current working precision. The running error analysis provides a shaper bound along with the result, without increasing significantly the computational cost. Numerical experiments illustrate that our algorithm runs much faster than the algorithm using the classic double-double library while sharing similar error estimates. Such an algorithm can be widely applicable for example to compute characteristic polynomials from eigen values. It can also be used into the Rasch model in psychological measurement.

[1]  Donald E. Knuth The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .

[2]  Jean-Michel Muller,et al.  Computing correctly rounded integer powers in floating-point arithmetic , 2010, TOMS.

[3]  Xiaoye S. Li,et al.  ARPREC: An arbitrary precision computation package , 2002 .

[4]  Richard P. Brent,et al.  Recent technical reports , 1977, SIGA.

[5]  Stef Graillat,et al.  Accurate Floating-Point Product and Exponentiation , 2009, IEEE Transactions on Computers.

[6]  Stef Graillat,et al.  Error-free transformations in real and complex floating point arithmetic , 2007 .

[7]  Siegfried M. Rump,et al.  Accurate Floating-Point Summation Part II: Sign, K-Fold Faithful and Rounding to Nearest , 2008, SIAM J. Sci. Comput..

[8]  Xiangke Liao,et al.  Accurate evaluation of the k-th derivative of a polynomial and its application , 2013, J. Comput. Appl. Math..

[9]  Ole Caprani,et al.  Roundoff errors in floating-point summation , 1975 .

[10]  Webb Miller Graph Transformations for Roundoff Analysis , 1976, SIAM J. Comput..

[11]  Siegfried M. Rump,et al.  Ultimately Fast Accurate Summation , 2009, SIAM J. Sci. Comput..

[12]  Christoph Quirin Lauter,et al.  Basic building blocks for a triple-double intermediate format , 2005 .

[13]  Giuseppe Fedele,et al.  A property of the elementary symmetric functions , 2005 .

[14]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[15]  Ilse C. F. Ipsen,et al.  Computing Characteristic Polynomials from Eigenvalues , 2011, SIAM J. Matrix Anal. Appl..

[16]  T. J. Dekker,et al.  A floating-point technique for extending the available precision , 1971 .

[17]  Nicholas J. Higham,et al.  Accuracy and stability of numerical algorithms, Second Edition , 2002 .

[18]  James Demmel,et al.  Design, implementation and testing of extended and mixed precision BLAS , 2000, TOMS.

[19]  Michael R. Harwell,et al.  Computing Elementary Symmetric Functions and Their Derivatives: A Didactic , 1996 .

[20]  Lothar Reichel,et al.  On the Evaluation of Polynomial Coefficients , 2003, Numerical Algorithms.

[21]  Philippe Langlois,et al.  How to Ensure a Faithful Polynomial Evaluation with the Compensated Horner Algorithm , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).

[22]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[23]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[24]  Vincent Lefèvre,et al.  MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.

[25]  Xiaoye S. Li,et al.  Algorithms for quad-double precision floating point arithmetic , 2000, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001.

[26]  Siegfried M. Rump,et al.  Accurate Floating-Point Summation Part I: Faithful Rounding , 2008, SIAM J. Sci. Comput..

[27]  Philippe Langlois,et al.  Algorithms for accurate, validated and fast polynomial evaluation , 2009 .

[28]  Nicolas Louvet,et al.  Algorithmes compensés en arithmétique flottante : précision, validation, performances. (Compensated algorithms in floating point arithmetic : accuracy, validation, performances) , 2007 .

[29]  Siegfried M. Rump,et al.  Accurate Sum and Dot Product , 2005, SIAM J. Sci. Comput..

[30]  Philippe Langlois,et al.  More Instruction Level Parallelism Explains the Actual Efficiency of Compensated Algorithms , 2007 .

[31]  Stef Graillat,et al.  Accurate computing elementary symmetric functions , 2013, ACCA.