Accurate and Fast Evaluation of Elementary Symmetric Functions
暂无分享,去创建一个
[1] Donald E. Knuth. The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .
[2] Jean-Michel Muller,et al. Computing correctly rounded integer powers in floating-point arithmetic , 2010, TOMS.
[3] Xiaoye S. Li,et al. ARPREC: An arbitrary precision computation package , 2002 .
[4] Richard P. Brent,et al. Recent technical reports , 1977, SIGA.
[5] Stef Graillat,et al. Accurate Floating-Point Product and Exponentiation , 2009, IEEE Transactions on Computers.
[6] Stef Graillat,et al. Error-free transformations in real and complex floating point arithmetic , 2007 .
[7] Siegfried M. Rump,et al. Accurate Floating-Point Summation Part II: Sign, K-Fold Faithful and Rounding to Nearest , 2008, SIAM J. Sci. Comput..
[8] Xiangke Liao,et al. Accurate evaluation of the k-th derivative of a polynomial and its application , 2013, J. Comput. Appl. Math..
[9] Ole Caprani,et al. Roundoff errors in floating-point summation , 1975 .
[10] Webb Miller. Graph Transformations for Roundoff Analysis , 1976, SIAM J. Comput..
[11] Siegfried M. Rump,et al. Ultimately Fast Accurate Summation , 2009, SIAM J. Sci. Comput..
[12] Christoph Quirin Lauter,et al. Basic building blocks for a triple-double intermediate format , 2005 .
[13] Giuseppe Fedele,et al. A property of the elementary symmetric functions , 2005 .
[14] David Thomas,et al. The Art in Computer Programming , 2001 .
[15] Ilse C. F. Ipsen,et al. Computing Characteristic Polynomials from Eigenvalues , 2011, SIAM J. Matrix Anal. Appl..
[16] T. J. Dekker,et al. A floating-point technique for extending the available precision , 1971 .
[17] Nicholas J. Higham,et al. Accuracy and stability of numerical algorithms, Second Edition , 2002 .
[18] James Demmel,et al. Design, implementation and testing of extended and mixed precision BLAS , 2000, TOMS.
[19] Michael R. Harwell,et al. Computing Elementary Symmetric Functions and Their Derivatives: A Didactic , 1996 .
[20] Lothar Reichel,et al. On the Evaluation of Polynomial Coefficients , 2003, Numerical Algorithms.
[21] Philippe Langlois,et al. How to Ensure a Faithful Polynomial Evaluation with the Compensated Horner Algorithm , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).
[22] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[23] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[24] Vincent Lefèvre,et al. MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.
[25] Xiaoye S. Li,et al. Algorithms for quad-double precision floating point arithmetic , 2000, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001.
[26] Siegfried M. Rump,et al. Accurate Floating-Point Summation Part I: Faithful Rounding , 2008, SIAM J. Sci. Comput..
[27] Philippe Langlois,et al. Algorithms for accurate, validated and fast polynomial evaluation , 2009 .
[28] Nicolas Louvet,et al. Algorithmes compensés en arithmétique flottante : précision, validation, performances. (Compensated algorithms in floating point arithmetic : accuracy, validation, performances) , 2007 .
[29] Siegfried M. Rump,et al. Accurate Sum and Dot Product , 2005, SIAM J. Sci. Comput..
[30] Philippe Langlois,et al. More Instruction Level Parallelism Explains the Actual Efficiency of Compensated Algorithms , 2007 .
[31] Stef Graillat,et al. Accurate computing elementary symmetric functions , 2013, ACCA.