Liquid Crystals Tunable Optical Metamaterials

A critical discussion with detailed calculations for the complex refractive indexes of metamaterials of various nanoconstituent makeups, sizes, shapes and concentrations, and periodic nanostructured patterns/geometry are presented. These metamaterials possess tunable subunity, zero, or negative refractive indexes, on account of the large birefringence of their nematic liquid crystal constituent. We also studied the special case involving laser dye-doped nematic liquid crystals that could provide optical gain. It is shown that the resulting metamaterials' loss can be minimized, while achieving the desired tunable birefringence. Some preliminary experimental studies have demonstrated fast optically induced modulation of the nematic liquid crystals and indicated the possibility of ultimately realizing fast tunable or nonlinear optical metamaterials.

[1]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[2]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[3]  E. Graugnard,et al.  Electric-field tuning of the Bragg peak in large-pore Ti O 2 inverse shell opals , 2005 .

[4]  A. Diaz,et al.  Nano-Dispersed Organic Liquid and Liquid Crystals for All-Time-Scales Optical Switching and Tunable Negative-and Zero- Index Materials , 2008 .

[5]  Wojciech Kuczynski,et al.  Submicrosecond electro‐optic switching in the liquid‐crystal smectic A phase: The soft‐mode ferroelectric effect , 1987 .

[6]  D H Werner,et al.  Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes. , 2006, Optics letters.

[7]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[8]  I. Khoo Nonlinear optics of liquid crystalline materials , 2009 .

[9]  Guo Ping Wang,et al.  Design and fabrication of diverse metamaterial structures by holographic lithography. , 2008, Optics express.

[10]  Iam-Choon Khoo,et al.  Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices. , 2007, Optics express.

[11]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[12]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[13]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[14]  Determination of the permittivity of nematic liquid crystals in the microwave region , 2003 .

[15]  Jae-Hong Park,et al.  Theory and experimental studies of all-optical transmission switching in a twist-alignment dye-doped nematic liquid crystal , 2008 .

[16]  Shiyoshi Yokoyama,et al.  Phototunable photonic bandgap in a chiral liquid crystal laser device , 2004 .

[17]  J. Stewart Aitchison,et al.  Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies , 2006 .

[18]  N. Engheta,et al.  Metamaterials: Physics and Engineering Explorations , 2006 .

[19]  Vassilios Yannopapas,et al.  Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  Shin-Tson Wu,et al.  Spatially tunable laser emission in dye-doped photonic liquid crystals , 2006 .

[21]  Seokho Yun,et al.  Tunable Frequency Selective Surfaces and Negative-Zero-Positive Index Metamaterials Based on Liquid Crystals , 2008, IEEE Transactions on Antennas and Propagation.

[22]  Vladimir M. Shalaev,et al.  Tunable optical negative-index metamaterials employing anisotropic liquid crystals , 2007 .

[23]  Jae-Hong Park,et al.  All-optical switching of continuous wave, microsecond lasers with a dye-doped nematic liquid crystal , 2007 .

[24]  Xiao Liang,et al.  Electrically tunable negative permeability metamaterials based on nematic liquid crystals , 2007 .

[25]  Winn,et al.  A dielectric omnidirectional reflector , 1998, Science.

[26]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[27]  V. Kopp,et al.  Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. , 1998, Optics letters.

[28]  Tina Clausnitzer,et al.  Narrowband, polarization-independent free-space wave notch filter. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[30]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[31]  Mark A. Handschy,et al.  Electro‐optic switching using total internal reflection by a ferroelectric liquid crystal , 1989 .

[32]  Yuebing Zheng,et al.  Light‐Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals , 2008 .

[33]  P. Hands,et al.  Liquid crystal laser arrays , 2008 .

[34]  Viktor A. Podolskiy,et al.  Active metamaterials: Sign of refractive index and gain-assisted dispersion management , 2007, 0704.3765.

[35]  Iam-Choon Khoo,et al.  Submillisecond grating diffractions in nematic liquid crystal films , 1983 .

[36]  Hanspeter Helm,et al.  Far Infrared Properties of Electro-Optic Crystals Measured by THz Time-Domain Spectroscopy , 1999 .

[37]  I. Khoo,et al.  Nanosecond-laser-induced optical wave mixing and ultrasonic wave generation in the nematic phase of liquid crystals. , 1984, Optics letters.

[38]  Yan Tang,et al.  Tunability of the refractive index of gold nanoparticle dispersions. , 2007, Nano letters.

[39]  M. Broyer,et al.  Optical properties of gold clusters in the size range 2-4 nm , 1998 .

[40]  Robert L. Whetten,et al.  Optical Absorption Spectra of Nanocrystal Gold Molecules , 1997 .

[41]  G. Tayeb,et al.  Compensation of loss to approach –1 effective index by gain in metal-dielectric stacks , 2009 .

[42]  A. Yariv Optical electronics in modern communications , 1997 .

[43]  Vladimir M. Shalaev,et al.  Tunable magnetic response of metamaterials , 2009 .

[44]  John B. Pendry,et al.  Removal of absorption and increase in resolution in a near-field lens via optical gain , 2003 .

[45]  Iam-Choon Khoo Liquid Crystals XI , 2007 .

[46]  Vollmer,et al.  Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. , 1993, Physical review. B, Condensed matter.