Strong Bisimulation for the Explicit Fusion Calculus

The pi calculus holds the promise of compile-time checks for whether a given program will have the correct interactive behaviour. The theory behind such checks is bisimulation. In the synchronous pi calculus, it is well-known that the various natural definitions of (strong) bisimulation yield different relations. In contrast, for the asynchronous pi calculus, they collapse to a single relation. We show that the definitions transfer naturally from the pi calculus to the explicit fusion calculus (a symmetric variant of the synchronous pi calculus), where they also collapse, and yield a simpler theory.

[1]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[2]  Davide Sangiorgi,et al.  On Bisimulations for the Asynchronous pi-Calculus , 1996, Theor. Comput. Sci..

[3]  Björn Victor,et al.  Concurrent Constraints in the Fusion Calculus , 1998, ICALP.

[4]  Philippa Gardner,et al.  Explicit fusions , 2000, Theor. Comput. Sci..

[5]  Sagar Chaki,et al.  Types as models: model checking message-passing programs , 2002, POPL '02.

[6]  Luca Cardelli,et al.  Modern concurrency abstractions for C# , 2002, TOPL.

[7]  Yuxi Fu Bisimulation Lattice of Chi Processes , 1998, ASIAN.

[8]  R. Milner,et al.  Bigraphical Reactive Systems , 2001, CONCUR.

[9]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[10]  Cédric Fournet,et al.  A hierarchy of equivalences for asynchronous calculi , 1998, J. Log. Algebraic Methods Program..

[11]  Boris Magnusson,et al.  ECOOP 2002 — Object-Oriented Programming , 2002, Lecture Notes in Computer Science.

[12]  Ugo Montanari,et al.  D-Fusion: A Distinctive Fusion Calculus , 2004, APLAS.

[13]  Cosimo Laneve,et al.  Linear forwarders , 2007, Inf. Comput..

[14]  Nobuko Yoshida,et al.  On Reduction-Based Process Semantics , 1995, Theor. Comput. Sci..

[15]  S. Krishnan,et al.  2 XLANG : Web Services for Business Process Design , 2002 .

[16]  Davide Sangiorgi,et al.  Some Congruence Properties for Pi-Calculus Bisimilarities , 1998, Theor. Comput. Sci..

[17]  Massimo Merro On the Expressiveness of Chi, Update, and Fusion calculi , 1998, EXPRESS.

[18]  Kousha Etessami,et al.  A Hierarchy of Polynomial-Time Computable Simulations for Automata , 2002, CONCUR.

[19]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.

[20]  Cédric Fournet,et al.  The reflexive CHAM and the join-calculus , 1996, POPL '96.

[21]  Lucian Wischik,et al.  Explicit Fusions: Theory and Implementation , 2001 .

[22]  Björn Victor,et al.  The fusion calculus: expressiveness and symmetry in mobile processes , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[23]  Atsushi Ohori,et al.  Advances in Computing Science ASIAN 98 , 1998, Lecture Notes in Computer Science.

[24]  Cnrs Fre,et al.  Model Checking a Path (Preliminary Report) , 2003 .

[25]  Sylvain Conchon,et al.  Jocaml: mobile agents for Objective-Caml , 1999, Proceedings. First and Third International Symposium on Agent Systems Applications, and Mobile Agents.

[26]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[27]  Yuxi Fu Open Bisimulations on Chi Processes , 1999, CONCUR.

[28]  Davide Sangiorgi,et al.  The Pi-Calculus - a theory of mobile processes , 2001 .

[29]  Davide Sangiorgi,et al.  A Theory of Bisimulation for the pi-Calculus , 1993, CONCUR.

[30]  C. A. Petri,et al.  Concurrency Theory , 1986, Advances in Petri Nets.

[31]  Mogens Nielsen,et al.  Mathematical Foundations of Computer Science 2000 , 2001, Lecture Notes in Computer Science.

[32]  Cosimo Laneve,et al.  The Fusion Machine , 2002, CONCUR.