Neutron irradiation effects on the structural properties of KU1, KS-4V and I301 silica glasses

In this work we have studied the effects of high neutron fluencies and gamma doses on the structural properties of three different types of silica glasses: two high purity silica with different OH content, KU1 (800 ppm) and KS-4V (<;0.2 ppm); and a commercial silica Infrasil 301 (<;8 ppm). The experimental results (Raman and FTIR spectra) have been compared with ab-initio simulations and show that, while the changes on the structure of the gamma irradiated silica are not significant, the structural changes due to neutron irradiation result in an increase of the number of strained bonds responsible of the formation of new defects which alter the optical properties of the glasses.

[1]  R. Boscaino,et al.  Polyamorphic transformation induced by electron irradiation in a -SiO 2 glass , 2009 .

[2]  P. Umari,et al.  Medium-range structure of vitreous SiO2 obtained through first-principles investigation of vibrational spectra , 2009 .

[3]  T. Nishitani,et al.  In situ transmissivity measurements of KU1 quartz in the UV range under 14 MeV neutron irradiation , 2002 .

[4]  L. Skuja Optically active oxygen-deficiency-related centers in amorphous silicon dioxide , 1998 .

[5]  J. T. Krause,et al.  Raman scattering and far infra-red absorption in neutron compacted silica , 1970 .

[6]  B. A. Levin,et al.  Results of irradiation tests of KU-1 and KS-4V silica glasses as ITER candidate window materials , 2003 .

[7]  R. Yamamoto,et al.  First-principles study of neutral oxygen vacancies in amorphous silica and germania , 2004 .

[8]  Hiroshi Hirashima,et al.  Intrinsic- and extrinsic-defect formation in silica glasses by radiation☆ , 1994 .

[9]  Á. Ibarra,et al.  Vacuum ultraviolet excitation of the 4.4 eV emission band in neutron irradiated KU1 and KS-4Vquartz glasses , 2008 .

[10]  E. Hodgson,et al.  Gamma irradiation induced defects in different types of fused silica , 2009 .

[11]  A. Q. Tool,et al.  RELATION BETWEEN INELASTIC DEFORMABILITY AND THERMAL EXPANSION OF GLASS IN ITS ANNEALING RANGE , 1946 .

[12]  Fernando Mota,et al.  PKA energy spectra and primary damage identification in amorphous silica under different neutron energy spectra , 2007 .

[13]  F. L. Galeener,et al.  Theory for the first-order vibrational spectra of disordered solids , 1978 .

[14]  Angel Ibarra,et al.  Thermal stability of gamma irradiation induced defects for different fused silica , 2011 .

[15]  A. E. Geissberger,et al.  Raman studies of vitreous Si O 2 versus fictive temperature , 1983 .

[16]  F. L. Galeener,et al.  Band limits and the vibrational spectra of tetrahedral glasses , 1979 .

[17]  B. Champagnon,et al.  IR and Raman spectroscopies, a way to understand how the Roman window glasses were made? , 2008 .

[18]  P. Umari,et al.  Vibrational spectra of vitreous germania from first-principles , 2006 .

[19]  W. Malfait,et al.  29Si NMR spectroscopy of silica glass: T1 relaxation and constraints on the Si–O–Si bond angle distribution , 2008 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  E. Hodgson,et al.  The ITER project: the role of insulators , 2004 .

[22]  D. Orlinski,et al.  Measurements of the radiation resistant fused quartz radioluminescence spectral intensity under irradiation in the pulse nuclear reactor , 1999 .

[23]  Fernando Mota,et al.  Thermal stability of neutron irradiation effects on KU1 fused silica , 2008 .

[24]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[25]  William Primak,et al.  Fast-Neutron-Induced Changes in Quartz and Vitreous Silica , 1958 .

[26]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[27]  Á. Ibarra,et al.  Neutron irradiation effects on optical absorption of KU1 and KS-4V quartz glasses and Infrasil 301 , 2009 .

[28]  B. Boizot,et al.  Raman study of β-irradiated glasses , 1999 .

[29]  Á. Ibarra,et al.  Comparison of neutron and gamma irradiation effects on KU1 fused silica monitored by electron paramagnetic resonance , 2009 .

[30]  Hamburger SynchrotronstrahlungslaborHASYLAB Bond angle distribution in amorphous germania and silica , 1996 .

[31]  J. M. Perlado,et al.  Molecular dynamics study of structure transformation and H effects in irradiated silica , 2009 .

[32]  Á. Ibarra,et al.  Vacuum ultraviolet excitation spectra of the 1.9 eV luminescence in neutron irradiated KU1 and KS-4V quartz glasses and Infrasil 301 , 2010 .

[33]  C. Martinet,et al.  Elastic anomalous behavior of silica glass under high-pressure: In-situ Raman study , 2009 .

[34]  M. Cannas,et al.  The structural disorder of a silica network probed by site selective luminescence of the nonbridging oxygen hole centre , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  H. Hosono,et al.  Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO(2). , 2001, Physical review letters.

[36]  P. Paillet,et al.  Radiation Effects on Silica-Based Preforms and Optical Fibers-II: Coupling Ab initio Simulations and Experiments , 2008, IEEE Transactions on Nuclear Science.

[37]  R. Boscaino,et al.  Raman spectroscopy study of β-irradiated silica glass , 2003 .

[38]  J. Baggio,et al.  Radiation Effects on Silica-Based Preforms and Optical Fibers—I: Experimental Study With Canonical Samples , 2008, IEEE Transactions on Nuclear Science.

[39]  James E. Shelby,et al.  Density of vitreous silica , 2004 .

[40]  D. Orlinski,et al.  Quartz KU-1 optical density measurements after irradiation in the nuclear reactor IR-8 , 1999 .

[41]  Linards Skuja,et al.  The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2 , 1994 .

[42]  Minoru Tomozawa,et al.  A simple IR spectroscopic method for determining fictive temperature of silica glasses , 1995 .

[43]  Alfredo Pasquarello,et al.  Identification of Raman defect lines as signatures of ring structures in vitreous silica , 1998 .

[44]  B. Hehlen Inter-tetrahedra bond angle of permanently densified silicas extracted from their Raman spectra , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  Surinder Singh,et al.  Neutron irradiation effects on optical and structural properties of silicate glasses , 2009 .

[46]  R. Heidinger Dielectric and mechanical properties of neutron irradiated KU1 and KS-4V glass , 2003 .

[47]  R. Boscaino,et al.  Irradiation effects on the OH-related infrared absorption band in synthetic wet silica , 2007 .

[48]  S. Girard,et al.  Radiation Effects on Silica-Based Optical Fibers: Recent Advances and Future Challenges , 2013, IEEE Transactions on Nuclear Science.

[49]  M. Tomozawa,et al.  Anomalous hydroxyl diffusion profile in silica glass , 2003 .

[50]  H. Hosono,et al.  Fluorine laser-induced silicon hydride Si–H groups in silica , 2007 .

[51]  Emilio Artacho,et al.  Neutral self-defects in a silica model: A first-principles study , 2005 .

[52]  T. Nishitani,et al.  Temperature dependence of the transmission loss in KU-1 and KS-4V quartz glasses for the ITER diagnostic window , 2005 .

[53]  I. Šimon Structure of Neutron-Irradiated Quartz and Vitreous Silica , 1957 .

[54]  K. Awazu,et al.  Strained Si–O–Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses , 2003 .

[55]  C. Sonneville,et al.  Progressive transformations of silica glass upon densification. , 2012, The Journal of chemical physics.

[56]  Á. Ibarra,et al.  Vacuum ultraviolet excitation of the 2.7 eV emission band in neutron irradiated silica , 2009 .

[57]  Kazuya Saito,et al.  Precise determination of fictive temperature of silica glass by infrared absorption spectrum , 2003 .

[58]  C. Martinet,et al.  High pressure elastic and plastic deformations of silica: In situ diamond anvil cell Raman experiments , 2008 .

[59]  Michael T. Murtagh,et al.  Observation of an anomalous density minimum in vitreous silica. , 2004, Physical review letters.

[60]  M. D. Zeidler,et al.  Amorphous silica studied by high energy X-ray diffraction , 1995 .