Mutations in potassium channel kcnd3 cause spinocerebellar ataxia type 19

To identify the causative gene for the neurodegenerative disorder spinocerebellar ataxia type 19 (SCA19) located on chromosomal region 1p21‐q21.

[1]  Chao Pang,et al.  Observ‐OM and Observ‐TAB: Universal syntax solutions for the integration, search, and exchange of phenotype and genotype information , 2012, Human mutation.

[2]  Sanjeev Gupta,et al.  Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders , 2011, Journal of cellular and molecular medicine.

[3]  Koji Abe,et al.  Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. , 2011, American journal of human genetics.

[4]  P. Schwartz,et al.  Transient outward current (I(to)) gain-of-function mutations in the KCND3-encoded Kv4.3 potassium channel and Brugada syndrome. , 2011, Heart rhythm.

[5]  Margreet C. Ridder,et al.  Knockdown of MLC1 in primary astrocytes causes cell vacuolation: A MLC disease cell model , 2011, Neurobiology of Disease.

[6]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[7]  Xin Jin,et al.  TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing. , 2010, Brain : a journal of neurology.

[8]  C. Wijmenga,et al.  Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23. , 2010, American journal of human genetics.

[9]  Alexandra Durr,et al.  Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond , 2010, The Lancet Neurology.

[10]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[11]  A. Singleton,et al.  Human ataxias: a genetic dissection of inositol triphosphate receptor (ITPR1)-dependent signaling , 2010, Trends in Neurosciences.

[12]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[13]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[14]  A. Dávalos,et al.  Cellular and Molecular Pathways Triggering Neurodegeneration in the Spinocerebellar Ataxias , 2010, The Cerebellum.

[15]  H. Orr,et al.  Emerging pathogenic pathways in the spinocerebellar ataxias. , 2009, Current opinion in genetics & development.

[16]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[17]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[18]  K. Watschinger,et al.  A Destructive Interaction Mechanism Accounts for Dominant-Negative Effects of Misfolded Mutants of Voltage-Gated Calcium Channels , 2008, The Journal of Neuroscience.

[19]  M. Covarrubias,et al.  The Neuronal Kv4 Channel Complex , 2008, Neurochemical Research.

[20]  J. Nerbonne,et al.  Kv4.3 is not required for the generation of functional Ito,f channels in adult mouse ventricles. , 2008, Journal of molecular and cellular cardiology.

[21]  Sung-Cherl Jung,et al.  Regulation of Dendritic Excitability by Activity-Dependent Trafficking of the A-Type K+ Channel Subunit Kv4.2 in Hippocampal Neurons , 2007, Neuron.

[22]  J. Chai,et al.  Structural basis for modulation of Kv4 K+ channels by auxiliary KChIP subunits , 2007, Nature Neuroscience.

[23]  Nicholas C. Spitzer,et al.  Electrical activity in early neuronal development , 2006, Nature.

[24]  Daniel Johnston,et al.  Deletion of Kv4.2 Gene Eliminates Dendritic A-Type K+ Current and Enhances Induction of Long-Term Potentiation in Hippocampal CA1 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[25]  Henrik Jörntell,et al.  Synaptic Memories Upside Down: Bidirectional Plasticity at Cerebellar Parallel Fiber-Purkinje Cell Synapses , 2006, Neuron.

[26]  Shunsuke Kato,et al.  Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods , 2006, Nucleic acids research.

[27]  Dagmar Nolte,et al.  Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes , 2006, Nature Genetics.

[28]  A. Zharkikh,et al.  Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral , 2005, Journal of Medical Genetics.

[29]  C. Yeo,et al.  Time and tide in cerebellar memory formation , 2005, Current Opinion in Neurobiology.

[30]  James S Trimmer,et al.  Light and electron microscopic analysis of KChIP and Kv4 localization in rat cerebellar granule cells , 2005, The Journal of comparative neurology.

[31]  S. Korn,et al.  Potassium channels , 2005, IEEE Transactions on NanoBioscience.

[32]  M. Covarrubias,et al.  Molecular physiology and modulation of somatodendritic A-type potassium channels , 2004, Molecular and Cellular Neuroscience.

[33]  K. Rhodes,et al.  KChIPs and Kv4 α Subunits as Integral Components of A-Type Potassium Channels in Mammalian Brain , 2004, The Journal of Neuroscience.

[34]  Andrew W Varga,et al.  Structure and function of Kv4-family transient potassium channels. , 2004, Physiological reviews.

[35]  K. Rhodes,et al.  KChIPs and Kv4 alpha subunits as integral components of A-type potassium channels in mammalian brain. , 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  R. Sinke,et al.  SCA19 and SCA22: evidence for one locus with a worldwide distribution. , 2004, Brain : a journal of neurology.

[37]  K. Rhodes,et al.  A Fundamental Role for KChIPs in Determining the Molecular Properties and Trafficking of Kv4.2 Potassium Channels* , 2003, Journal of Biological Chemistry.

[38]  Yi-Hua Hsu,et al.  Contrasting expression of Kv4.3, an A‐type K+ channel, in migrating Purkinje cells and other post‐migratory cerebellar neurons , 2003, The European journal of neuroscience.

[39]  Bing-Wen Soong,et al.  A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. , 2003, Brain : a journal of neurology.

[40]  R. Sinke,et al.  Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21-q21 , 2002, Human Genetics.

[41]  K. Takimoto,et al.  Palmitoylation of KChIP Splicing Variants Is Required for Efficient Cell Surface Expression of Kv4.3 Channels* , 2002, The Journal of Biological Chemistry.

[42]  R. Sinke,et al.  Clinical and genetic analysis of a four-generation family with a distinct autosomal dominant cerebellar ataxia , 2001, Journal of Neurology.

[43]  G. Roomans Pharmacological treatment of the ion transport defect in cystic fibrosis , 2001, Expert opinion on investigational drugs.

[44]  K. Rhodes,et al.  Modulation of A-type potassium channels by a family of calcium sensors , 2000, Nature.

[45]  J. Trimmer Regulation of ion channel expression by cytoplasmic subunits , 1998, Current Opinion in Neurobiology.

[46]  B. Rudy,et al.  Differential expression of Kv4 K+ channel subunits mediating subthreshold transient K+ (A-type) currents in rat brain. , 1998, Journal of neurophysiology.

[47]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[48]  S. Hoffman,et al.  Funding for malaria genome sequencing , 1997, Nature.

[49]  M. Tsaur,et al.  Cloning, expression and CNS distribution of Kv4.3, an A‐type K+ channel α subunit , 1997 .

[50]  M. Tsaur,et al.  Cloning, expression and CNS distribution of Kv4.3, an A-type K+ channel alpha subunit. , 1997, FEBS letters.

[51]  K. Herrup,et al.  The compartmentalization of the cerebellum. , 1997, Annual review of neuroscience.

[52]  B. Rudy,et al.  Identification of molecular components of A-type channels activating at subthreshold potentials. , 1994, Journal of neurophysiology.

[53]  Michael Litt,et al.  Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1 , 1994, Nature Genetics.

[54]  R. Keynes The ionic channels in excitable membranes. , 1975, Ciba Foundation symposium.