Verapamil attenuates ATP depletion during hypoxia: 31P NMR studies of the isolated rat heart.

[1]  G. Bullock,et al.  The oxygen paradox and the calcium paradox: two facets of the same problem? , 1978, Journal of molecular and cellular cardiology.

[2]  A. Schwartz,et al.  Effects of diltiazem on anoxic injury in the isolated rat heart. , 1983, Journal of the American College of Cardiology.

[3]  K. Shine,et al.  Verapamil protection of ischemic isolated rabbit heart: dependence on pretreatment. , 1983, Journal of molecular and cellular cardiology.

[4]  R. London,et al.  Cytosolic free calcium measured by fluorine NMR in perfused rat heart , 1986 .

[5]  H. Zimmer,et al.  De Novo Synthesis of Myocardial Adenine Nucleotides in the Rat: Acceleration during recovery from oxygen Deficiency , 1973, Circulation research.

[6]  P. Maiorano,et al.  Protection by verapamil of globally ischemic rat hearts: energy preservation, a partial explanation. , 1985, Journal of molecular and cellular cardiology.

[7]  W. Nayler,et al.  Pharmacological protection of mitochondrial function in hypoxic heart muscle: Effect of verapamil, propranolol, and methylprednisolone. , 1978, Cardiovascular research.

[8]  D. Renlund,et al.  A Phosphorus‐31 Nuclear Magnetic Resonance Study of the Metabolic, Contractile, and Ionic Consequences of Induced Calcium Alterations in the Isovolumic Rat Heart , 1986, Circulation research.

[9]  S. Epstein,et al.  Effect of verapamil on pH of ischemic canine myocardium. , 1985, Journal of the American College of Cardiology.

[10]  P. D. de Tombe,et al.  Nifedipine reduces adenine nucleotide breakdown in ischemic rat heart. , 1982, European journal of pharmacology.

[11]  H. Kanaide,et al.  Total adenine nucleotide stores and sarcoplasmic reticular Ca transport in ischemic rat heart. , 1984, The American journal of physiology.

[12]  W. Nayler,et al.  Irreversible myocardial injury in anoxic perfused rat hearts. , 1975, The American journal of pathology.

[13]  W. Nayler,et al.  Fundamental mechanisms of action of calcium antagonists in myocardial ischemia. , 1987, The American journal of cardiology.

[14]  I. Grupp,et al.  Differential cardiovascular effects of calcium channel blocking agents: potential mechanisms. , 1982, The American journal of cardiology.

[15]  J. Boudot,et al.  Diltiazem protects the isolated rabbit heart from the mechanical and ultrastructural damage produced by transient hypoxia, low-flow ischemia and exposure to Ca++-free medium. , 1983, The Journal of pharmacology and experimental therapeutics.

[16]  J. Cheung,et al.  Mechanism of protection by verapamil and nifedipine from anoxic injury in isolated cardiac myocytes. , 1984, The American journal of physiology.

[17]  W. Nayler,et al.  A protective effect of verapamil on hypoxic heart muscle. , 1976, Cardiovascular research.

[18]  P. Poole‐Wilson,et al.  The Effects of Verapamil, Quiescence, and Cardioplegia on Calcium Exchange and Mechanical Function in Ischemic Rabbit Myocardium , 1982, Circulation research.

[19]  N. Lavanchy,et al.  Effects of diltiazem on the energy metabolism of the isolated rat heart submitted to ischaemia: a 31P NMR study. , 1986, Journal of molecular and cellular cardiology.

[20]  M. Karmazyn,et al.  Comparative effects of calcium channel blocking agents and varying extracellular calcium concentration on hypoxia/reoxygenation and ischemia/reperfusion-induced cardiac injury. , 1984, The Journal of pharmacology and experimental therapeutics.

[21]  P. D. Henry Comparative pharmacology of calcium antagonists: nifedipine, verapamil and diltiazem. , 1980, The American journal of cardiology.

[22]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[23]  P. D. de Tombe,et al.  Diltiazem administered before or during myocardial ischemia decreases adenine nucleotide catabolism. , 1984, Journal of molecular and cellular cardiology.

[24]  J. Ingwall Phosphorus nuclear magnetic resonance spectroscopy of cardiac and skeletal muscles. , 1982, The American journal of physiology.

[25]  J. Ingwall,et al.  Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study. , 1985, The Journal of biological chemistry.

[26]  Hamm Cw,et al.  Protection of infarcting myocardium by slow channel inhibitors. Comparative effects of verapamil, nifedipine, and diltiazem in the coronary-ligated, isolated working rat heart. , 1983 .

[27]  J. Cheung,et al.  Mitochondrial function and intracellular calcium in anoxic cardiac myocytes. , 1986, The American journal of physiology.

[28]  E. Braunwald,et al.  Preservation of high-energy phosphates by verapamil in reperfused myocardium. , 1984, Circulation.

[29]  P. Bottomley,et al.  Assessment of pharmacological treatment of myocardial infarction by phosphorus-31 NMR with surface coils. , 1981, Science.

[30]  Y. Nakamura,et al.  Accentuated negative inotropism of verapamil after ischaemic intervention in isolated working rat heart. , 1984, Cardiovascular research.

[31]  K. J. Blackburn,et al.  Prevention of reperfusion damage in working rat hearts by calcium antagonists and calmodulin antagonists. , 1984, Journal of molecular and cellular cardiology.

[32]  G. Patten,et al.  Adrenergic receptor binding studies on rat and marmoset cardiac membranes , 1986 .

[33]  D. Allen,et al.  Measurements of intracellular calcium concentration in heart muscle: the effects of inotropic interventions and hypoxia. , 1984, Journal of molecular and cellular cardiology.