Integral Equations and Operator Theory Super-Wavelets Versus Poly-Bergman Spaces

We investigate a vector-valued version of the classical continuous wavelet transform. Special attention is given to the case when the analyzing vector consists of the first elements of the basis of admissible functions, namely the functions whose Fourier transform is a Laguerre function. In this case, the resulting spaces are, up to a multiplier isomorphism, poly-Bergman spaces. To demonstrate this fact, we introduce a new map and call it the polyanalytic Bergman transform. Our method of proof uses Vasilevski’s restriction principle for Bergman-type spaces. The construction is based on the idea of multiplexing of signals.

[1]  Deguang Han,et al.  Super-Wavelets and Decomposable Wavelet Frames , 2005 .

[2]  K. Seip Regular sets of sampling and interpolation for weighted Bergman spaces , 1993 .

[3]  A. Ramazanov Representation of the space of polyanalytic functions as a direct sum of orthogonal subspaces. Application to rational approximations , 1999 .

[4]  M. Rieffel Von Neumann algebras associated with pairs of lattices in Lie groups , 1981 .

[5]  Gitta Kutyniok,et al.  Affine Density in Wavelet Analysis , 2007, Lecture Notes in Mathematics.

[6]  L. D. Abreu On the structure of Gabor and super Gabor spaces , 2010 .

[7]  M. B. Balk,et al.  On polyanalytic functions , 1970 .

[8]  Yurii Lyubarskii,et al.  Gabor (super)frames with Hermite functions , 2008, 0804.4613.

[9]  Gitta Kutyniok,et al.  Affine Density, Frame Bounds, and the Admissibility Condition for Wavelet Frames , 2007 .

[10]  Gerard Ascensi,et al.  Model Space Results for the Gabor and Wavelet Transforms , 2008, IEEE Transactions on Information Theory.

[11]  Wenchang Sun Density of wavelet frames , 2007 .

[12]  K. Seip Beurling type density theorems in the unit disk , 1993 .

[13]  J. Ramanathan,et al.  Incompleteness of Sparse Coherent States , 1995 .

[14]  Yurii Lyubarskii,et al.  Gabor frames with Hermite functions , 2007 .

[15]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .

[16]  Radu Balan Multiplexing of signals using superframes , 2000, SPIE Optics + Photonics.

[17]  B. D. Johnson,et al.  Orthogonal wavelet frames and vector-valued wavelet transforms , 2007 .

[18]  S. Lang SL[2](R) , 1985 .

[19]  G. Kutyniok,et al.  Density of weighted wavelet frames , 2003 .

[20]  O. Hutník On the structure of the space of wavelet transforms , 2008 .

[21]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[22]  D. Dutkay,et al.  MRA super-wavelets , 2004, math/0410403.

[23]  A Paley–Wiener theorem for Bergman spaces with application to invariant subspaces , 2007 .

[24]  L. D. Abreu Wavelet frames with Laguerre functions , 2011 .

[25]  Gitta Kutyniok,et al.  The Homogeneous Approximation Property for wavelet frames , 2007, J. Approx. Theory.

[26]  O. Hutník A note on wavelet subspaces , 2010 .

[27]  Hans G. Feichtinger,et al.  Two Banach spaces of atoms for stable wavelet frame expansions , 2007, J. Approx. Theory.

[28]  K. Gröchenig,et al.  Banach Gabor frames with Hermite functions: polyanalytic spaces from the Heisenberg group , 2010, 1012.4283.

[29]  Dorin Ervin Dutkay,et al.  Oversampling generates super-wavelets , 2005, math/0511399.

[30]  L. D. Abreu Sampling and interpolation in Bargmann-Fock spaces of polyanalytic functions , 2009, 0901.4386.

[31]  Deguang Han,et al.  Frames, bases, and group representations , 2000 .

[32]  N. Vasilevski On the structure of Bergman and poly-Bergman spaces , 1999 .