On the Expressiveness of Metric Temporal Logic over Bounded Timed Words

It is known that Metric Temporal Logic (MTL) is strictly less expressive than the Monadic First-Order Logic of Order and Metric (FO[<, +1]) in the pointwise semantics over bounded time domains (i.e., timed words of bounded duration) [15]. In this paper, we present an extension of MTL which has the same expressive power as (FO[<, +1]) in both the pointwise and continuous semantics over bounded time domains.

[1]  Joël Ouaknine,et al.  Time-Bounded Reachability for Monotonic Hybrid Automata: Complexity and Fixed Points , 2013, ATVA.

[2]  Mario Bravetti,et al.  CONCUR 2009 - Concurrency Theory, 20th International Conference, CONCUR 2009, Bologna, Italy, September 1-4, 2009. Proceedings , 2009, CONCUR.

[3]  Denis Poitrenaud,et al.  SPOT: an extensible model checking library using transition-based generalized Bu/spl uml/chi automata , 2004, The IEEE Computer Society's 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, 2004. (MASCOTS 2004). Proceedings..

[4]  Ron Koymans,et al.  Specifying real-time properties with metric temporal logic , 1990, Real-Time Systems.

[5]  Jirí Srba,et al.  Comparing the Expressiveness of Timed Automata and Timed Extensions of Petri Nets , 2008, FORMATS.

[6]  Deepak D'Souza,et al.  On the Expressiveness of MTL with Past Operators , 2006, FORMATS.

[7]  Joost-Pieter Katoen,et al.  A Probabilistic Extension of UML Statecharts , 2002, FTRTFT.

[8]  Joël Ouaknine,et al.  Expressive Completeness for Metric Temporal Logic , 2012, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[9]  Parosh Aziz Abdulla,et al.  Advanced Ramsey-Based Büchi Automata Inclusion Testing , 2011, CONCUR.

[10]  Joël Ouaknine,et al.  Online Monitoring of Metric Temporal Logic , 2014, RV.

[11]  Wa Halang,et al.  REAL-TIME SYSTEMS .2. , 1989 .

[12]  Deepak D'Souza,et al.  On the expressiveness of MTL in the pointwise and continuous semantics , 2007, International Journal on Software Tools for Technology Transfer.

[13]  Gerard J. Holzmann,et al.  The Model Checker SPIN , 1997, IEEE Trans. Software Eng..

[14]  Pierre-Yves Schobbens,et al.  The Regular Real-Time Languages , 1998, ICALP.

[15]  Joël Ouaknine,et al.  Towards a Theory of Time-Bounded Verification , 2010, ICALP.

[16]  Sundar Sarukkai,et al.  FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science, 25th International Conference, Hyderabad, India, December 15-18, 2005, Proceedings , 2005, FSTTCS.

[17]  Paul Hunter When is Metric Temporal Logic Expressively Complete? , 2013, CSL.

[18]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[19]  Patricia Bouyer,et al.  On the expressiveness of TPTL and MTL , 2010, Inf. Comput..

[20]  Joël Ouaknine,et al.  Some Recent Results in Metric Temporal Logic , 2008, FORMATS.

[21]  Joël Ouaknine,et al.  The Cost of Punctuality , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[22]  Thomas Wilke,et al.  Specifying Timed State Sequences in Powerful Decidable Logics and Timed Automata , 1994, FTRTFT.

[23]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[24]  Juhani Karhumäki,et al.  Computer Science - Theory and Applications , 2014, Lecture Notes in Computer Science.

[25]  Joël Ouaknine,et al.  On the decidability of metric temporal logic , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[26]  Joël Ouaknine,et al.  On Reachability for Hybrid Automata over Bounded Time , 2011, ICALP.

[27]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[28]  Paritosh K. Pandya,et al.  On Expressive Powers of Timed Logics: Comparing Boundedness, Non-punctuality, and Deterministic Freezing , 2011, CONCUR.

[29]  Joël Ouaknine,et al.  Time-Bounded Verification , 2009, CONCUR.