Nanospheres of a new intermetallic FeSn5 phase: synthesis, magnetic properties and anode performance in Li-ion batteries.

We synthesized monodisperse nanospheres of an intermetallic FeSn(5) phase via a nanocrystal-conversion protocol using preformed Sn nanospheres as templates. This tetragonal phase in P4/mcc space group, along with the defect structure Fe(0.74)Sn(5) of our nanospheres, has been resolved by synchrotron X-ray diffraction and Rietveld refinement. Importantly, FeSn(5), which is not yet established in the Fe-Sn phase diagram, exhibits a quasi-one dimensional crystal structure along the c-axis, thus leading to interesting anisotropic thermal expansion and magnetic properties. Magnetization measurements indicate that nanospheres are superparamagnetic above the blocking temperature T(B) = 300 K, which is associated with the higher magnetocrystalline anisotropy constant K = 3.33 kJ m(-3). The combination of the magnetization measurements and first-principles density functional theory calculations reveals the canted antiferromagnetic nature with significant spin fluctuation in lattice a-b plane. The low Fe concentration also leads Fe(0.74)Sn(5) to enhanced capacity as an anode in Li ion batteries.

[1]  J. Coey Noncollinear Spin Arrangement in Ultrafine Ferrimagnetic Crystallites , 1971 .

[2]  Gervais Chapuis,et al.  SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions , 2007 .

[3]  J. Tirado,et al.  Electrochemical Reaction of Lithium with Nanocrystalline CoSn3 , 2008 .

[4]  W. Han,et al.  Single-crystal intermetallic M-Sn (M = Fe, Cu, Co, Ni) nanospheres as negative electrodes for lithium-ion batteries. , 2010, ACS applied materials & interfaces.

[5]  Stanislaus S. Wong,et al.  Properties of Highly Crystalline NiO and Ni Nanoparticles Prepared by High-temperature Oxidation and Reduction , 2010 .

[6]  W. Han,et al.  Sn/SnOx Core−Shell Nanospheres: Synthesis, Anode Performance in Li Ion Batteries, and Superconductivity , 2010 .

[7]  B. Roques,et al.  A Mossbauer study of FeSn2 , 1985 .

[8]  Yolanda Vasquez,et al.  Nanocrystal conversion chemistry: A unified and materials-general strategy for the template-based synthesis of nanocrystalline solids , 2008 .

[9]  John T. Vaughey,et al.  Li x Cu6Sn5 ( 0 < x < 13 ) : An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries , 1999 .

[10]  Hansu Kim,et al.  Mechanochemical synthesis and electrochemical characteristics of Mg2Sn as an anode material for Li-ion batteries , 2001 .

[11]  A. Roy,et al.  NEUTRON DIFFRACTION STUDY OF ANTIFERROMAGNETISM IN FeSn$sub 2$ , 1962 .

[12]  W. S. Zhang,et al.  Structure and magnetic properties of Cr nanoparticles and Cr2O3 nanoparticles , 2005 .

[13]  Kristina Edström,et al.  Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries , 2007 .

[14]  Y. Tsunoda,et al.  Temperature variation of the tetragonality in ordered PtFe alloy , 2004 .

[15]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[16]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[17]  R. E. Schaak,et al.  Shape-controlled conversion of beta-Sn nanocrystals into intermetallic M-Sn (M=Fe, Co, Ni, Pd) nanocrystals. , 2007, Journal of the American Chemical Society.

[18]  A. K. Tyagi,et al.  Anisotropic thermal expansion behavior in tetragonal Sr2MgWO6 , 2006 .

[19]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[20]  M. Richter,et al.  Magnetocrystalline anisotropy in L10 FePt and exchange coupling in FePt/Fe3Pt nanocomposites , 2005 .

[21]  G. Oszlányi,et al.  Ab initio structure solution by charge flipping. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[22]  Michael M. Thackeray,et al.  Li{sub x}Cu{sub 6}Sn{sub 5} (0 , 1999 .

[23]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.