Using Local Alignments for Relation Recognition

This paper discusses the problem of marrying structural similarity with semantic relatedness for Information Extraction from text. Aiming at accurate recognition of relations, we introduce local alignment kernels and explore various possibilities of using them for this task. We give a definition of a local alignment (LA) kernel based on the Smith-Waterman score as a sequence similarity measure and proceed with a range of possibilities for computing similarity between elements of sequences. We show how distributional similarity measures obtained from unlabeled data can be incorporated into the learning task as semantic knowledge. Our experiments suggest that the LA kernel yields promising results on various biomedical corpora outperforming two baselines by a large margin. Additional series of experiments have been conducted on the data sets of seven general relation types, where the performance of the LA kernel is comparable to the current state-of-the-art results.

[1]  Claudio Giuliano,et al.  FBK-IRST: Kernel Methods for Semantic Relation Extraction , 2007, SemEval@ACL.

[2]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[3]  Latifur Khan,et al.  Cause Identification from Aviation Safety Incident Reports via Weakly Supervised Semantic Lexicon Construction , 2010, J. Artif. Intell. Res..

[4]  Marti A. Hearst,et al.  TREC 2007 Genomics Track Overview , 2007, TREC.

[5]  Martha Palmer,et al.  Verb semantics for English-Chinese translation , 1995, Machine Translation.

[6]  Razvan C. Bunescu,et al.  Learning for information extraction: from named entity recognition and disambiguation to relation extraction , 2007 .

[7]  Ryan McDonald Extracting Relations from Unstructured Text , 2004 .

[8]  C. Ouzounis,et al.  Automatic extraction of protein interactions from scientific abstracts. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[9]  Rohit J. Kate,et al.  Comparative experiments on learning information extractors for proteins and their interactions , 2005, Artif. Intell. Medicine.

[10]  Michael Collins,et al.  Convolution Kernels for Natural Language , 2001, NIPS.

[11]  Doaa Samy,et al.  UCM3: Classification of Semantic Relations between Nominals using Sequential Minimal Optimization , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[12]  Razvan C. Bunescu,et al.  A Shortest Path Dependency Kernel for Relation Extraction , 2005, HLT.

[13]  Jun'ichi Tsujii,et al.  Dependency Parsing and Domain Adaptation with LR Models and Parser Ensembles , 2007, EMNLP.

[14]  Ralph Grishman,et al.  Message Understanding Conference- 6: A Brief History , 1996, COLING.

[15]  Diarmuid Ó Séaghdha,et al.  Semantic Classification with Distributional Kernels , 2008, COLING.

[16]  Ari Rappoport,et al.  Classification of Semantic Relationships between Nominals Using Pattern Clusters , 2008, ACL.

[17]  Paul Nulty UCD-PN: Classification of Semantic Relations Between Nominals using WordNet and Web Counts , 2007, SemEval@ACL.

[18]  Lawrence H. Smith,et al.  Hidden Markov models and optimized sequence alignments , 2003, Comput. Biol. Chem..

[19]  Vladimir Vapnik,et al.  Estimation of Dependences Based on Empirical Data: Springer Series in Statistics (Springer Series in Statistics) , 1982 .

[20]  F ChenStanley,et al.  An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.

[21]  Simone Paolo Ponzetto,et al.  Knowledge Derived From Wikipedia For Computing Semantic Relatedness , 2007, J. Artif. Intell. Res..

[22]  Chris Quirk,et al.  Unsupervised Construction of Large Paraphrase Corpora: Exploiting Massively Parallel News Sources , 2004, COLING.

[23]  David Haussler,et al.  Convolution kernels on discrete structures , 1999 .

[24]  H. Ney,et al.  A novel string-to-string distance measure with applications to machine translation evaluation , 2003, MTSUMMIT.

[25]  Razvan C. Bunescu,et al.  Subsequence Kernels for Relation Extraction , 2005, NIPS.

[26]  Peter J. Stuckey,et al.  Fast Set Bounds Propagation Using a BDD-SAT Hybrid , 2010, J. Artif. Intell. Res..

[27]  Roser Morante,et al.  ILK: Machine learning of semantic relations with shallow features and almost no data , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[28]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[29]  Graeme Hirst,et al.  Evaluating WordNet-based Measures of Lexical Semantic Relatedness , 2006, CL.

[30]  Tatsuya Akutsu,et al.  Protein homology detection using string alignment kernels , 2004, Bioinform..

[31]  Igor Mel’čuk,et al.  Dependency Syntax: Theory and Practice , 1987 .

[32]  Claire Nédellec,et al.  Learning Language in Logic - Genic Interaction Extraction Challenge , 2005 .

[33]  Tatsuya Akutsu,et al.  Optimizing amino acid substitution matrices with a local alignment kernel , 2006, BMC Bioinformatics.

[34]  David J. Weir,et al.  Characterising Measures of Lexical Distributional Similarity , 2004, COLING.

[35]  Pradeep Ravikumar,et al.  A Comparison of String Distance Metrics for Name-Matching Tasks , 2003, IIWeb.

[36]  Thorsten Joachims,et al.  Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.

[37]  Scott E. Fahlman,et al.  CMU-AT: Semantic Distance and Background Knowledge for Identifying Semantic Relations , 2007, SemEval@ACL.

[38]  Timothy Baldwin,et al.  MELB-KB: Nominal Classification as Noun Compound Interpretation , 2007, SemEval@ACL.

[39]  J. R. Firth,et al.  A Synopsis of Linguistic Theory, 1930-1955 , 1957 .

[40]  Razvan C. Bunescu,et al.  Extracting Relations from Text: From Word Sequences to Dependency Paths , 2007 .

[41]  Ralf Zimmer,et al.  RelEx - Relation extraction using dependency parse trees , 2007, Bioinform..

[42]  Gérard Bloch,et al.  Incorporating prior knowledge in support vector machines for classification: A review , 2008, Neurocomputing.

[43]  Jun'ichi Tsujii,et al.  Syntactic Features for Protein-Protein Interaction Extraction , 2007, LBM.

[44]  Alessandro Moschitti,et al.  Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees , 2006, ECML.

[45]  J. R. Firth,et al.  Studies in Linguistic Analysis. , 1974 .

[46]  Bernhard Schölkopf,et al.  Support vector learning , 1997 .

[47]  David W. Conrath,et al.  Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy , 1997, ROCLING/IJCLCLP.

[48]  Doaa Samy,et al.  UCM3: Classification of Semantic Relations between Nominals using Sequential Minimal Optimization , 2007, International Workshop on Semantic Evaluation.

[49]  Charles Elkan,et al.  The Field Matching Problem: Algorithms and Applications , 1996, KDD.

[50]  S. B. Needleman,et al.  A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins , 1989 .

[51]  Eleazar Eskin,et al.  The Spectrum Kernel: A String Kernel for SVM Protein Classification , 2001, Pacific Symposium on Biocomputing.

[52]  Patrick Pantel,et al.  Ontologizing Semantic Relations , 2006, ACL.

[53]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[54]  Ted Pedersen,et al.  WordNet::Similarity - Measuring the Relatedness of Concepts , 2004, NAACL.

[55]  Preslav Nakov,et al.  Solving Relational Similarity Problems Using the Web as a Corpus , 2008, ACL.

[56]  Jun'ichi Tsujii,et al.  Task-oriented Evaluation of Syntactic Parsers and Their Representations , 2008, ACL.

[57]  Martin Chodorow,et al.  Combining local context and wordnet similarity for word sense identification , 1998 .

[58]  John Shawe-Taylor,et al.  Syllables and other String Kernel Extensions , 2002, ICML.

[59]  Preslav Nakov,et al.  Classification of semantic relations between nominals , 2009, Lang. Resour. Evaluation.

[60]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[61]  Mirella Lapata,et al.  Proceedings of ACL-08: HLT , 2008 .

[62]  Antal van den Bosch,et al.  Applying Spelling Error Correction Techniques for Improving Semantic Role Labelling , 2005, CoNLL.

[63]  Jason Weston,et al.  Mismatch string kernels for discriminative protein classification , 2004, Bioinform..

[64]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[65]  Preslav Nakov,et al.  UCB: System Description for SemEval Task #4 , 2007, SemEval@ACL.

[66]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[67]  Claudio Giuliano,et al.  Exploiting Shallow Linguistic Information for Relation Extraction from Biomedical Literature , 2006, EACL.

[68]  V. Vapnik Estimation of Dependences Based on Empirical Data , 2006 .

[69]  Pieter W. Adriaans,et al.  Semantic Types of Some Generic Relation Arguments: Detection and Evaluation , 2008, ACL.

[70]  Jeff G. Schneider,et al.  Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text , 2008, NIPS.

[71]  Stephen E. Robertson,et al.  Probabilistic models of indexing and searching , 1980, SIGIR '80.

[72]  Park,et al.  Identifying the Interaction between Genes and Gene Products Based on Frequently Seen Verbs in Medline Abstracts. , 1998, Genome informatics. Workshop on Genome Informatics.

[73]  James Mayfield,et al.  Learning Named Entity Hyponyms for Question Answering , 2008, IJCNLP.

[74]  Jean-Michel Renders,et al.  Word-Sequence Kernels , 2003, J. Mach. Learn. Res..

[75]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[76]  Syin Chan,et al.  Extracting Causal Knowledge from a Medical Database Using Graphical Patterns , 2000, ACL.

[77]  Peter D. Turney Similarity of Semantic Relations , 2006, CL.

[78]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[79]  Nello Cristianini,et al.  Classification using String Kernels , 2000 .

[80]  Michael Collins,et al.  Head-Driven Statistical Models for Natural Language Parsing , 2003, CL.

[81]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[82]  Saif M. Mohammad,et al.  Measuring Semantic Distance using Distributional Profiles of Concepts , 2008 .

[83]  Christiane Fellbaum,et al.  Combining Local Context and Wordnet Similarity for Word Sense Identification , 1998 .

[84]  Diarmuid Ó Séaghdha Semantic Classification with WordNet Kernels , 2009, HLT-NAACL.

[85]  Peter D. Turney,et al.  SemEval-2007 Task 04: Classification of Semantic Relations between Nominals , 2007, *SEMEVAL.

[86]  R. Girju,et al.  A knowledge-rich approach to identifying semantic relations between nominals , 2010, Inf. Process. Manag..

[87]  Dragomir R. Radev,et al.  Semi-Supervised Classification for Extracting Protein Interaction Sentences using Dependency Parsing , 2007, EMNLP.

[88]  Matthew Lease,et al.  Parsing Biomedical Literature , 2005, IJCNLP.

[89]  Dan I. Moldovan,et al.  Automatic Discovery of Part-Whole Relations , 2006, CL.

[90]  Dmitry Zelenko,et al.  Kernel Methods for Relation Extraction , 2002, J. Mach. Learn. Res..

[91]  Lillian Lee,et al.  Measures of Distributional Similarity , 1999, ACL.

[92]  Neil R. Smalheiser,et al.  Implicit Text Linkages between Medline Records: Using Arrowsmith as an Aid to Scientific Discovery , 1999, Libr. Trends.

[93]  Preslav Nakov,et al.  SemEval-2007 Task 04: Classification of Semantic Relations between Nominals , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[94]  Marie Louise Elizabeth van der Plas,et al.  Automatic lexico-semantic acquisition for question answering , 2008 .