An Adaptive Multiscale Finite Element Method

This work is devoted to an adaptive multiscale finite element method (MsFEM) for solving elliptic problems with rapidly oscillating coefficients. Starting from a general version of the MsFEM with oversampling, we derive an a posteriori estimate for the $H^1$-error between the exact solution of the problem and a corresponding MsFEM approximation. Our estimate holds without any assumptions on scale separation or on the type of the heterogeneity. The estimator splits into different contributions which account for the coarse grid error, the fine grid error, and the oversampling error. Based on the error estimate, we construct an adaptive algorithm that is validated in numerical experiments.

[1]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[2]  M. Larson,et al.  Adaptive Variational Multiscale Methods Based on A Posteriori Error Estimation: Duality Techniques for Elliptic Problems , 2005 .

[3]  C. Schwab,et al.  Generalized FEM for Homogenization Problems , 2002 .

[4]  Thomas Y. Hou,et al.  Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..

[5]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[6]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[7]  T. Hou,et al.  Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification , 2008 .

[8]  Ana-Maria Matache,et al.  Sparse Two-Scale FEM for Homogenization Problems , 2002, J. Sci. Comput..

[9]  Multiscale Finite Element Methods for Elliptic Equations , 2010 .

[10]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[11]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[12]  Mats G. Larson,et al.  An adaptive variational multiscale method for convection–diffusion problems , 2009 .

[13]  ZHANGXIN CHEN,et al.  Analysis of the Multiscale Finite Element Method for Nonlinear and Random Homogenization Problems , 2007, SIAM J. Numer. Anal..

[14]  Assyr Abdulle,et al.  Adaptive finite element heterogeneous multiscale method for homogenization problems , 2011 .

[15]  Todd Arbogast,et al.  A Multiscale Mortar Mixed Finite Element Method , 2007, Multiscale Model. Simul..

[16]  BEN SCHWEIZER,et al.  Homogenization of Degenerate Two-Phase Flow Equations with Oil Trapping , 2008, SIAM J. Math. Anal..

[17]  Yalchin Efendiev,et al.  Numerical Homogenization of Monotone Elliptic Operators , 2003, Multiscale Model. Simul..

[18]  Antoine Gloria An Analytical Framework for Numerical Homogenization. Part II: Windowing and Oversampling , 2008, Multiscale Model. Simul..

[19]  Thomas J. R. Hughes,et al.  The Continuous Galerkin Method Is Locally Conservative , 2000 .

[20]  Patrick Henning,et al.  Networks and Heterogeneous Media Convergence of Msfem Approximations for Elliptic, Non-periodic Homogenization Problems , 2022 .

[21]  Patrick Henning,et al.  The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains , 2009, Numerische Mathematik.

[22]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[23]  Thomas Y. Hou,et al.  Multiscale Modeling and Computation of Incompressible Flow , 2002 .

[24]  Yalchin Efendiev,et al.  Homogenization of nonlinear random parabolic operators , 2005, Advances in Differential Equations.

[25]  P. Henning,et al.  Homogenization of the degenerate two-phase flow equations , 2013 .

[26]  Assyr Abdulle,et al.  A posteriori error analysis of the heterogeneous multiscale method for homogenization problems , 2009 .

[27]  E Weinan,et al.  The heterogeneous multi-scale method for homogenization problems , 2005 .

[28]  Daniel Peterseim,et al.  Oversampling for the Multiscale Finite Element Method , 2012, Multiscale Model. Simul..

[29]  Antoine Gloria,et al.  NUMERICAL HOMOGENIZATION: SURVEY, NEW RESULTS, AND PERSPECTIVES , 2012 .

[30]  Mary F. Wheeler,et al.  Mortar Upscaling for Multiphase Flow in Porous Media , 2002 .

[31]  Ben Schweizer,et al.  The needle problem approach to non-periodic homogenization , 2011, Networks Heterog. Media.

[32]  Patrick Henning,et al.  The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift , 2010, Networks Heterog. Media.

[33]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[34]  Patrick Henning,et al.  A NEWTON-SCHEME FRAMEWORK FOR MULTISCALE METHODS FOR NONLINEAR ELLIPTIC HOMOGENIZATION PROBLEMS , 2015 .

[35]  M. Larson,et al.  A mixed adaptive variational multiscale method with applications in oil reservoir simulation , 2009 .

[36]  Andreas Dedner,et al.  A generic interface for parallel and adaptive discretization schemes: abstraction principles and the Dune-Fem module , 2010, Computing.

[37]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE , 2008, Computing.

[38]  Yalchin Efendiev,et al.  Numerical Homogenization and Correctors for Nonlinear Elliptic Equations , 2004, SIAM J. Appl. Math..

[39]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[40]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[41]  Yalchin Efendiev,et al.  Mixed Multiscale Finite Element Methods for Stochastic Porous Media Flows , 2008, SIAM J. Sci. Comput..

[42]  M. Larson,et al.  Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for elliptic problems , 2007 .

[43]  C. Schwab,et al.  Two-scale FEM for homogenization problems , 2002 .

[44]  Endre Süli,et al.  Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem , 2001 .

[45]  M. Peszynska,et al.  MORTAR ADAPTIVITY IN MIXED METHODS FOR FLOW IN POROUS MEDIA , 2005 .

[46]  T. Hou,et al.  Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .

[47]  Yalchin Efendiev,et al.  Multiscale finite element methods for porous media flows and their applications , 2007 .

[48]  Mario Ohlberger,et al.  A Posteriori Error Estimates for the Heterogeneous Multiscale Finite Element Method for Elliptic Homogenization Problems , 2005, Multiscale Model. Simul..

[49]  E. Rank,et al.  A multiscale finite-element method , 1997 .

[50]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework , 2008, Computing.

[51]  T. Hou,et al.  Removing the Cell Resonance Error in the Multiscale Finite Element Method via a Petrov-Galerkin Formulation , 2004 .

[52]  Oliver Sander,et al.  The dune-subgrid module and some applications , 2009, Computing.

[53]  Antoine Gloria,et al.  Reduction of the resonance error---Part 1: Approximation of homogenized coefficients , 2011 .