Perspectives of lindane (γ-hexachlorocyclohexane) biodegradation from the environment: a review

[1]  X. Qi,et al.  Catalytic dehydrochlorination of lindane by nitrogen-containing multiwalled carbon nanotubes (N-MWCNTs). , 2017, The Science of the total environment.

[2]  J. Molina-Molina,et al.  Ecotoxicological assessment of soils polluted with chemical waste from lindane production: Use of bacterial communities and earthworms as bioremediation tools. , 2017, Ecotoxicology and environmental safety.

[3]  M. Asemoloye,et al.  Synergistic rhizosphere degradation of γ-hexachlorocyclohexane (lindane) through the combinatorial plant-fungal action , 2017, PloS one.

[4]  S. Khare,et al.  Biodegradation of γ-hexachlorocyclohexane (lindane) by halophilic bacterium Chromohalobacter sp. LD2 isolated from HCH dumpsite , 2017 .

[5]  Dharmender Kumar,et al.  Process optimization of γ- Hexachlorocyclohexane degradation using three novel Bacillus sp. strains , 2017 .

[6]  A. Marques,et al.  Exploration of the phycoremediation potential of Laminaria digitata towards diflubenzuron, lindane, copper and cadmium in a multitrophic pilot-scale experiment. , 2017, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[7]  N. Das,et al.  Microbial-enhanced lindane removal by sugarcane (Saccharum officinarum) in doped soil-applications in phytoremediation and bioaugmentation. , 2017, Journal of environmental management.

[8]  P. Faure,et al.  Application of chemical oxidation to remediate HCH-contaminated soil under batch and flow through conditions , 2017, Environmental Science and Pollution Research.

[9]  Longo Caterina,et al.  Lindane Bioremediation Capability of Bacteria Associated with the Demosponge Hymeniacidon perlevis , 2017, Marine drugs.

[10]  H. Richnow,et al.  Carbon, Hydrogen and Chlorine Stable Isotope Fingerprinting for Forensic Investigations of Hexachlorocyclohexanes. , 2017, Environmental science & technology.

[11]  S. Jaswal,et al.  Co-degradation study of lindane and chlorpyrifos by novel bacteria , 2017 .

[12]  Dharmender Kumar,et al.  Degradation study of lindane by novel strains Kocuria sp. DAB-1Y and Staphylococcus sp. DAB-1W , 2016, Bioresources and Bioprocessing.

[13]  J. Hao,et al.  Purification and Characterization of a New Alginate Lyase from Marine Bacterium Vibrio sp. SY08 , 2016, Marine drugs.

[14]  H. Kaur,et al.  Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane , 2016, Environmental Monitoring and Assessment.

[15]  Huilei Yu,et al.  An engineered microorganism can simultaneously detoxify cadmium, chlorpyrifos, and γ‐hexachlorocyclohexane , 2016, Journal of basic microbiology.

[16]  F. Fauvelle,et al.  Effect of organochlorine pesticides exposure on the maize root metabolome assessed using high-resolution magic-angle spinning (1)H NMR spectroscopy. , 2016, Environmental pollution.

[17]  M. Tsuda,et al.  Biodegradation of γ-hexachlorocyclohexane by transgenic hairy root cultures of Cucurbita moschata that accumulate recombinant bacterial LinA , 2016, Plant Cell Reports.

[18]  Faisal Mahmood,et al.  Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: a critical review , 2016, Environmental Science and Pollution Research.

[19]  S. Peng,et al.  Degradation of lindane and hexachlorobenzene in supercritical carbon dioxide using palladium nanoparticles stabilized in microcellular high-density polyethylene. , 2016, Chemosphere.

[20]  M. Despalatović,et al.  Polychlorinated biphenyls, organochlorine pesticides and trace metals in cultured and harvested bivalves from the eastern Adriatic coast (Croatia). , 2016, Chemosphere.

[21]  Amit Kumar Singh,et al.  Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation , 2016, Biodegradation.

[22]  T. Ternes,et al.  Hexachlorocyclohexane derivatives in industrial waste and samples from a contaminated riverine system. , 2016, Chemosphere.

[23]  J. D. Dávila Costa,et al.  Evidence of α-, β- and γ-HCH mixture aerobic degradation by the native actinobacteria Streptomyces sp. M7 , 2016, World journal of microbiology & biotechnology.

[24]  D. Siddavattam,et al.  Proteomics of Sphingobium indicum B90A for a deeper understanding of hexachlorocyclohexane (HCH) bioremediation , 2016, Reviews on environmental health.

[25]  Chao Yang,et al.  Metabolic Engineering of Pseudomonas putida KT2440 for Complete Mineralization of Methyl Parathion and γ-Hexachlorocyclohexane. , 2016, ACS synthetic biology.

[26]  G. Gadd,et al.  Biotransformation of β-hexachlorocyclohexane by the saprotrophic soil fungus Penicillium griseofulvum. , 2015, Chemosphere.

[27]  Hung Lee,et al.  Effect of Plant Growth Regulators on Phytoremediation of Hexachlorocyclohexane-Contaminated Soil , 2015, International journal of phytoremediation.

[28]  J. Oakeshott,et al.  Insights into Ongoing Evolution of the Hexachlorocyclohexane Catabolic Pathway from Comparative Genomics of Ten Sphingomonadaceae Strains , 2015, G3: Genes, Genomes, Genetics.

[29]  H. Richnow,et al.  Evaluating degradation of hexachlorcyclohexane (HCH) isomers within a contaminated aquifer using compound-specific stable carbon isotope analysis (CSIA). , 2015, Water research.

[30]  Devi Lal,et al.  Bacterial diversity and real‐time PCR based assessment of linA and linB gene distribution at hexachlorocyclohexane contaminated sites , 2015, Journal of basic microbiology.

[31]  Ey,et al.  Biodegradation of Hexachlorocyclohexane (HCH) Isomers by White Rot Fungus, Pleurotus florida , 2015 .

[32]  P. Hrabák,et al.  Degradability of hexachlorocyclohexanes in water using ferrate (VI). , 2015, Water science and technology : a journal of the International Association on Water Pollution Research.

[33]  W. Harding,et al.  Organochlorine pesticide levels in Clarias gariepinus from polluted freshwater impoundments in South Africa and associated human health risks. , 2015, Chemosphere.

[34]  C. Longo,et al.  Analytical investigations on the lindane bioremediation capability of the demosponge Hymeniacidon perlevis. , 2015, Marine pollution bulletin.

[35]  L. Laquitaine,et al.  Biodegradability of HCH in agricultural soils from Guadeloupe (French West Indies): identification of the lin genes involved in the HCH degradation pathway , 2015, Environmental Science and Pollution Research.

[36]  J. Gilbert,et al.  Comparative genomic analysis of nine Sphingobium strains: insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways , 2014, BMC Genomics.

[37]  Nandita Singh,et al.  Phytoextraction and dissipation of lindane by Spinacia oleracea L. , 2014, Ecotoxicology and environmental safety.

[38]  N. Das,et al.  Degradation of lindane by a novel embedded bio-nano hybrid system in aqueous environment , 2015, Applied Microbiology and Biotechnology.

[39]  A. Álvarez,et al.  Enhanced lindane removal from soil slurry by immobilized Streptomyces consortium , 2014 .

[40]  N. Das,et al.  Lindane degradation by Candida VITJzN04, a newly isolated yeast strain from contaminated soil: kinetic study, enzyme analysis and biodegradation pathway , 2014, World journal of microbiology & biotechnology.

[41]  C. S. Benimeli,et al.  Simultaneous bioremediation of Cr(VI) and lindane in soil by actinobacteria , 2014 .

[42]  Hua Fang,et al.  Metagenomic analysis reveals potential biodegradation pathways of persistent pesticides in freshwater and marine sediments. , 2014, The Science of the total environment.

[43]  J. Cordewener,et al.  Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger , 2014, Microbial Cell Factories.

[44]  J. Gilbert,et al.  Reconstructing an ancestral genotype of two hexachlorocyclohexane-degrading Sphingobium species using metagenomic sequence data , 2013, The ISME Journal.

[45]  V. Misra,et al.  An integrated (nano-bio) technique for degradation of γ-HCH contaminated soil. , 2013, Journal of hazardous materials.

[46]  C. Monterroso,et al.  Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using Cytisus striatus and bacterial inoculants in soils with distinct organic matter content. , 2013, Environmental pollution.

[47]  Ritu Singh Development integrated approach for the enhanced degradation of lindane , 2013 .

[48]  A. Tsatsakis,et al.  Persistent organochlorinated pesticides and mechanisms of their toxicity. , 2013, Toxicology.

[49]  E. Guerriero,et al.  Biodegradation of α-, β-, and γ-Hexachlorocyclohexane by Arthrobacter fluorescens and Arthrobacter giacomelloi , 2013, Applied Biochemistry and Biotechnology.

[50]  D. López,et al.  Application of System Dynamics technique to simulate the fate of persistent organic pollutants in soils. , 2013, Chemosphere.

[51]  N. Das,et al.  Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil , 2013, World journal of microbiology & biotechnology.

[52]  J. Damborský,et al.  Sphingobium baderi sp. nov., isolated from a hexachlorocyclohexane dump site. , 2013, International journal of systematic and evolutionary microbiology.

[53]  B. E. Barragán-Huerta,et al.  Lindane biodegradation by the Fusarium verticillioides AT-100 strain, isolated from Agave tequilana leaves: Kinetic study and identification of metabolites , 2012 .

[54]  Jasmine Shong,et al.  Towards synthetic microbial consortia for bioprocessing. , 2012, Current opinion in biotechnology.

[55]  J. Gilbert,et al.  Comparative Metagenomic Analysis of Soil Microbial Communities across Three Hexachlorocyclohexane Contamination Levels , 2012, PloS one.

[56]  W. Tych,et al.  Temporal trends of persistent organic pollutants: a comparison of different time series models. , 2012, Environmental science & technology.

[57]  Rui Huang,et al.  Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach , 2012, Microbial Cell Factories.

[58]  H. Poggi‐Varaldo,et al.  Enzymes involved in the biodegradation of hexachlorocyclohexane: a mini review. , 2012, Journal of environmental management.

[59]  N. Das,et al.  REMEDIATION OF LINDANE FROM ENVIRONMENT – AN OVERVIEW , 2012 .

[60]  A. Álvarez,et al.  Maize plants (Zea mays) root exudates enhance lindane removal by native Streptomyces strains , 2012 .

[61]  Jakub Hofman,et al.  A comparison of POPs bioaccumulation in Eisenia fetida in natural and artificial soils and the effects of aging. , 2012, Environmental pollution.

[62]  G. S. Kiran,et al.  Biosurfactants as green stabilizers for the biological synthesis of nanoparticles , 2011, Critical reviews in biotechnology.

[63]  A. Moldes,et al.  Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus. , 2011, Journal of agricultural and food chemistry.

[64]  G. Schüürmann,et al.  Determination of lindane leachability in soil-biosolid systems and its bioavailability in wheat plants. , 2011, Chemosphere.

[65]  J. M. Sáez,et al.  Lindane Biodegradation by Defined Consortia of Indigenous Streptomyces Strains , 2011 .

[66]  Sanjay Kumar Gupta,et al.  Evaluation of hexachlorocyclohexane contamination from the last lindane production plant operating in India , 2011, Environmental science and pollution research international.

[67]  Ying Yu,et al.  Cloning and characterisation of a novel 2,4-dichlorophenol hydroxylase from a metagenomic library derived from polychlorinated biphenyl-contaminated soil , 2011, Biotechnology Letters.

[68]  G. Peñuela,et al.  Isolation of a selected microbial consortium capable of degrading methyl parathion and p-nitrophenol from a contaminated soil site , 2011, Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes.

[69]  Swaranjit Singh Cameotra,et al.  Environmental Applications of Biosurfactants: Recent Advances , 2011, International journal of molecular sciences.

[70]  Nandita Singh,et al.  Comparative bioremediation potential of four rhizospheric microbial species against lindane. , 2011, Chemosphere.

[71]  Tânia M. S. Lima,et al.  Biodegradability of bacterial surfactants , 2011, Biodegradation.

[72]  H. Poggi‐Varaldo,et al.  Treatment of Soils Contaminated with γ-Hexachlorocyclohexane in Sequential Methanogenic-Aerobic Slurry Bioreactors , 2010 .

[73]  H. Poggi‐Varaldo,et al.  Effect of Tween 80 on Solubilization of Perchloroethylene , 2010 .

[74]  M. Kuzma,et al.  The influence of operating conditions on the efficiency of vapor phase hydrogen peroxide in the degradation of 4-(dimethylamino)benzaldehyde. , 2010, Chemosphere.

[75]  S. Mayilraj,et al.  Metabolic profiles and phylogenetic diversity of microbial communities from chlorinated pesticides contaminated sites of different geographical habitats of India , 2010, Journal of applied microbiology.

[76]  M. S. Fuentes,et al.  Isolation of pesticide-degrading actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides. , 2010 .

[77]  M. Caba,et al.  Organochlorine Pesticide Levels in Adipose Tissue of Pregnant Women in Veracruz, Mexico , 2010, Bulletin of environmental contamination and toxicology.

[78]  J. Oakeshott,et al.  Biochemistry of Microbial Degradation of Hexachlorocyclohexane and Prospects for Bioremediation , 2010, Microbiology and Molecular Biology Reviews.

[79]  A. Kunhi,et al.  Substantially enhanced degradation of hexachlorocyclohexane isomers by a microbial consortium on acclimation. , 2010, Journal of agricultural and food chemistry.

[80]  S. Paul,et al.  Ex situ and in situ biodegradation of lindane by Azotobacter chroococcum , 2009, Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes.

[81]  Ji Joong Cho,et al.  Isolation of a novel gene encoding a 3,5,6-trichloro-2-pyridinol degrading enzyme from a cow rumen metagenomic library , 2010, Biodegradation.

[82]  R. Lal,et al.  Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. , 2009, International journal of systematic and evolutionary microbiology.

[83]  Shuangjiang Liu,et al.  Abundance of Novel and Diverse tfdA-Like Genes, Encoding Putative Phenoxyalkanoic Acid Herbicide-Degrading Dioxygenases, in Soil , 2009, Applied and Environmental Microbiology.

[84]  K. Senoo,et al.  Genetic diversity of gamma‐hexachlorocyclohexane‐degrading sphingomonads isolated from a single experimental field , 2009, Letters in applied microbiology.

[85]  Joonhong Park,et al.  DNA-Stable Isotope Probing Integrated with Metagenomics for Retrieval of Biphenyl Dioxygenase Genes from Polychlorinated Biphenyl-Contaminated River Sediment , 2009, Applied and Environmental Microbiology.

[86]  M. Papadopoulou,et al.  Bioremediation of Lindane Contaminated Soil by Pleurotus ostreatus in Non Sterile Conditions Using Multilevel Factorial Design , 2009 .

[87]  D. Wunderlin,et al.  Integrated survey on toxic effects of lindane on neotropical fish: Corydoras paleatus and Jenynsia multidentata. , 2008, Environmental pollution.

[88]  A. Vangnai,et al.  A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancement of pesticide solubilization , 2008, Journal of applied microbiology.

[89]  M. S. Fuentes,et al.  Bioremediation of lindane-contaminated soil by Streptomyces sp. M7 and its effects on Zea mays growth , 2008 .

[90]  Mahesh Kumar Krishna Reddy,et al.  Isolation of hexachlorocyclohexane‐degrading Sphingomonas sp. by dehalogenase assay and characterization of genes involved in γ‐HCH degradation , 2008, Journal of applied microbiology.

[91]  H. Poggi‐Varaldo,et al.  Microbial Cell Factories BioMed Central Review , 2007 .

[92]  Sung Hee Joo,et al.  Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. , 2008, Chemosphere.

[93]  R. Navia,et al.  Remediation technologies for organochlorine-contaminated sites in developing countries. , 2008, Reviews of environmental contamination and toxicology.

[94]  C. S. Benimeli,et al.  Temperature and pH effect on lindane removal by Streptomyces sp. M7 in soil extract , 2007, Journal of basic microbiology.

[95]  H. K. Manonmani,et al.  Aerobic degradation of technical hexachlorocyclohexane by a defined microbial consortium. , 2007, Journal of hazardous materials.

[96]  Yan Sun,et al.  Analysis of the role of LinA and LinB in biodegradation of delta-hexachlorocyclohexane. , 2007, Environmental microbiology.

[97]  Yuji Nagata,et al.  Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis , 2007, Applied Microbiology and Biotechnology.

[98]  A. Vaidya,et al.  Bioisomerization kinetics of γ-HCH and biokinetics of Pseudomonas aeruginosa degrading technical HCH , 2007 .

[99]  J. Damborský,et al.  Degradation of β-hexachlorocyclohexane by haloalkane dehalogenase LinB from γ-hexachlorocyclohexane-utilizing bacterium Sphingobium sp. MI1205 , 2007, Archives of Microbiology.

[100]  Q. Hong,et al.  A gene linB2 responsible for the conversion of β-HCH and 2,3,4,5,6-pentachlorocyclohexanol in Sphingomonas sp. BHC-A , 2007, Applied Microbiology and Biotechnology.

[101]  K. Han,et al.  Genetic improvement of tree species for remediation of hazardous wastes , 1993, In Vitro Cellular & Developmental Biology - Plant.

[102]  J. Damborský,et al.  Degradation of beta-hexachlorocyclohexane by haloalkane dehalogenase LinB from gamma-hexachlorocyclohexane-utilizing bacterium Sphingobium sp. MI1205. , 2007, Archives of microbiology.

[103]  C. S. Benimeli,et al.  Lindane removal induction by Streptomyces sp. M7 , 2006, Journal of basic microbiology.

[104]  Ashwani Kumar,et al.  Biodegradation of hexachlorocyclohexane-isomers in contaminated soils , 2006 .

[105]  K. Paknikar,et al.  Integrated biological approach for the enhanced degradation of lindane , 2006 .

[106]  P. López-Mahía,et al.  Evaluation of HCH isomers and metabolites in soils, leachates, river water and sediments of a highly contaminated area. , 2006, Chemosphere.

[107]  T. Vogel,et al.  Plasmid-encoded gamma-hexachlorocyclohexane degradation genes and insertion sequences in Sphingobium francense (ex-Sphingomonas paucimobilis Sp+). , 2006, FEMS microbiology letters.

[108]  Jack T. Trevors,et al.  Full-scale in situ bioremediation of hexachlorocyclohexane-contaminated soil , 2006 .

[109]  Víctor de Lorenzo,et al.  Surveying biotransformations with à la carte genetic traps: translating dehydrochlorination of lindane (gamma-hexachlorocyclohexane) into lacZ-based phenotypes. , 2006, Environmental microbiology.

[110]  M. J. Sainz,et al.  Effects of hexachlorocyclohexane on rhizosphere fungal propagules and root colonization by arbuscular mycorrhizal fungi in Plantago lanceolata , 2006 .

[111]  B. Mertens Microbial monitoring and degradation of lindane in soil , 2006 .

[112]  R. M. Zablotowicz,et al.  The Rote of Plant and Microbial Hydrolytic Enzymes in Pesticide Metabolism , 2006 .

[113]  Maria Teresa Moreira,et al.  Anaerobic degradation of hexachlorocyclohexane isomers in liquid and soil slurry systems. , 2005, Chemosphere.

[114]  J. Cullum,et al.  Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbuk , 2005, International journal of systematic and evolutionary microbiology.

[115]  J. Ramos,et al.  16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. , 2005, Environmental microbiology.

[116]  Hui Liu,et al.  Organochlorine pesticides (DDTs and HCHs) in soils from the outskirts of Beijing, China. , 2005, Chemosphere.

[117]  P. Chaudhary,et al.  Enhanced biodegradation of beta- and delta-hexachlorocyclohexane in the presence of alpha- and gamma-isomers in contaminated soils. , 2005, Environmental science & technology.

[118]  Yuji Nagata,et al.  Degradation of β-Hexachlorocyclohexane by Haloalkane Dehalogenase LinB from Sphingomonas paucimobilis UT26 , 2005, Applied and Environmental Microbiology.

[119]  K. Paknikar,et al.  Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers , 2005 .

[120]  M. Mau,et al.  Characterization of the novel HCH-degrading strain, Microbacterium sp. ITRC1 , 2005, Applied Microbiology and Biotechnology.

[121]  J. Trevors,et al.  Biodegradation of hexachlorocyclohexane (HCH) by microorganisms , 2005, Biodegradation.

[122]  D. Wunderlin,et al.  Biodegradation of lindane by a native bacterial consortium isolated from contaminated river sediment , 2004 .

[123]  L. Gianfreda,et al.  Potential of extra cellular enzymes in remediation of polluted soils: a review , 2004 .

[124]  Tahir Husain,et al.  An overview and analysis of site remediation technologies. , 2004, Journal of environmental management.

[125]  Thomas E. Mallouk,et al.  Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater , 2004 .

[126]  M. Suar,et al.  Organization of lin Genes and IS6100 among Different Strains of Hexachlorocyclohexane-Degrading Sphingomonas paucimobilis: Evidence for Horizontal Gene Transfer , 2004, Journal of bacteriology.

[127]  A. Perosa,et al.  Dechlorination of lindane in the multiphase catalytic reduction system with Pd/C, Pt/C and Raney-Ni , 2004 .

[128]  K. Haider,et al.  Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultative anaerobic bacteria , 1977, Archives of Microbiology.

[129]  C. Tu Utilization and degradation of lindane by soil microorganisms , 1976, Archives of Microbiology.

[130]  Esther Carrillo-Pérez,et al.  AISLAMIENTO, IDENTIFICACIÓN Y EVALUACIÓN DE UN CULTIVO MIXTO DE MICROORGANISMOS CON CAPACIDAD PARA DEGRADAR DDT , 2004 .

[131]  M. Suar,et al.  Residues of hexachlorocyclohexane isomers in soil and water samples from Delhi and adjoining areas , 2004 .

[132]  Tácio De Campos,et al.  HCH distribution and microbial parameters after liming of a heavily contaminated soil in Rio de Janeiro. , 2003, Environmental research.

[133]  Yi-Fan Li,et al.  Global Gridded Emission Inventories of β-Hexachlorocyclohexane , 2003 .

[134]  R. M. Zablotowicz,et al.  Pesticide metabolism in plants and microorganisms , 2003, Weed Science.

[135]  A. Nawab,et al.  Determination of organochlorine pesticides in agricultural soil with special reference to gamma-HCH degradation by Pseudomonas strains. , 2003, Bioresource technology.

[136]  Yi-Fan Li,et al.  Global gridded emission inventories of beta-hexachlorocyclohexane. , 2003, Environmental science & technology.

[137]  Dimitris Lekkas,et al.  Organochlorine pesticides in the surface waters of Northern Greece. , 2003, Chemosphere.

[138]  Wei-xian Zhang,et al.  Nanoscale Iron Particles for Environmental Remediation: An Overview , 2003 .

[139]  M. Suar,et al.  Cloning and Characterization of lin Genes Responsible for the Degradation of Hexachlorocyclohexane Isomers by Sphingomonas paucimobilis Strain B90 , 2002, Applied and Environmental Microbiology.

[140]  T. Siddique,et al.  Biodegradation of gamma-hexachlorocyclohexane (lindane) and alpha-hexachlorocyclohexane in water and a soil slurry by a Pandoraea species. , 2002, Journal of agricultural and food chemistry.

[141]  U. Dörfler,et al.  Mineralization of plant-incorporated residues of 14C-isoproturon in arable soils originating from different farming systems , 2002 .

[142]  N. Assaf-Anid,et al.  Carbon Tetrachloride Reduction by Fe2+, S2-, and FeS with vitamin B12 as Organic Amendment , 2002 .

[143]  D. Elliott,et al.  Field assessment of nanoscale bimetallic particles for groundwater treatment. , 2001, Environmental science & technology.

[144]  ELECTROCHEMICAL REMEDIATION OF TRICHLOROETHENE-CONTAMINATED GROUNDWATER USING PALLADIZED IRON OXIDES , 2001, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[145]  T. N. Rogers,et al.  A review of structure-based biodegradation estimation methods. , 2001, Journal of hazardous materials.

[146]  C. Kaushik,et al.  Degradation of Hexachlorocyclohexane Isomers by Two Strains of Alcaligenes faecalis Isolated from a Contaminated Site , 2001, Bulletin of environmental contamination and toxicology.

[147]  M Matthies,et al.  Long-Range transport potential of semivolatile organic chemicals in coupled air-water systems , 2001, Environmental science and pollution research international.

[148]  D. Janssen,et al.  Microbial dehalogenation. , 2001, Current opinion in biotechnology.

[149]  A. Gupta,et al.  Dissipation of Fenvalerate Residues in Cauliflower , 2001, Bulletin of environmental contamination and toxicology.

[150]  C. Mougin,et al.  Plant and Fungal Cytochrome P-450s: Their Role in Pesticide Transformation , 2000 .

[151]  N. Awasthi,et al.  Factors influencing the degradation of soil-applied endosulfan isomers , 2000 .

[152]  C. Kaushik,et al.  Degradation of hexachlorocyclohexane (HCH; α, β, γ and δ) by Bacillus circulans and Bacillus brevis isolated from soil contaminated with HCH , 2000 .

[153]  C. Roy,et al.  The effect of soil moisture content on the sorption of five sterol biosynthesis inhibiting fungicides as a function of their physicochemical properties , 2000 .

[154]  J. Datta,et al.  Metabolism of gamma-hexachlorocyclohexane by Arthrobacter citreus strain BI-100: Identification of metabolites. , 2000, The Journal of general and applied microbiology.

[155]  K. Miyauchi,et al.  Complete analysis of genes and enzymes for γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26 , 1999, Journal of Industrial Microbiology and Biotechnology.

[156]  L. Young,et al.  Dehalogenation of lindane (γ-hexachlorocyclohexane) by anaerobic bacteria from marine sediments and by sulfate-reducing bacteria , 1999 .

[157]  R. Kuhad,et al.  Biodegradation of lindane (γ‐hexachlorocyclohexane) by the white‐rot fungus Trametes hirsutus , 1999 .

[158]  T. Vogel,et al.  Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. , 1999, International journal of systematic bacteriology.

[159]  K. Miyauchi,et al.  Cloning and Sequencing of a 2,5-Dichlorohydroquinone Reductive Dehalogenase Gene Whose Product Is Involved in Degradation of γ-Hexachlorocyclohexane by Sphingomonas paucimobilis , 1998, Journal of bacteriology.

[160]  M. Asther,et al.  Enhanced mineralization of lindane in soils supplemented with the white rot basidiomycete Phanerochaete chrysosporium , 1997 .

[161]  D. Crowley,et al.  Rhizosphere Ecology of Xenobiotic-Degrading Microorganisms , 1997 .

[162]  C. Reynolds,et al.  Rhizosphere microbial populations in contaminated soils , 1997 .

[163]  T. Vogel,et al.  Isolation and characterization of a novel gamma-hexachlorocyclohexane-degrading bacterium , 1996, Journal of bacteriology.

[164]  M. Asther,et al.  Biotransformation of the Insecticide Lindane by the White Rot Basidiomycete Phanerochaete chrysosporium , 1996 .

[165]  D. Crowley,et al.  Biodegradation of 3-chlorobenzoate as affected by rhizodeposition and selected carbon substrates , 1996 .

[166]  T. Adhya,et al.  Mineralization of alpha, gamma-, and beta-isomers of hexachlorocyclohexane by a soil bacterium under aerobic conditions , 1995 .

[167]  C. Wolk,et al.  Use of filamentous cyanobacteria for biodegradation of organic pollutants , 1995, Applied and environmental microbiology.

[168]  M. Gealt,et al.  Biodegradation and Bioremediation. , 1996 .

[169]  G. Stephenson,et al.  The Effect of Monooxygenase and Glutathione S-Transferase Inhibitors on the Metabolism of Diclofop-methyl and Fenoxaprop-ethyl in Barley and Wheat , 1993 .

[170]  H. M. Brown,et al.  Plant Biochemistry, Environmental Properties, and Global Impact of the Sulfonylurea Herbicides , 1991 .

[171]  N. Sethunathan,et al.  Degradation of Alpha-, Beta-, and Gamma-Hexachlorocyclohexane by a Soil Bacterium under Aerobic Conditions , 1990, Applied and environmental microbiology.

[172]  A. Zehnder,et al.  Effect of desorption and intraparticle mass transfer on the aerobic biomineralization of a-hexachlorocyclohexane in a contaminated calcareous soil. , 1990 .

[173]  M. Fukuda,et al.  Dehydrochlorination of γ-Hexachlorocyclohexane (γ-BHC) by γ-BHC-Assimilating Pseudomonas paucimobilis , 1989 .

[174]  K. Senoo,et al.  Isolation and identification of an aerobic γ-HCH-decomposing bacterium from soil , 1989 .

[175]  H. Jürgens,et al.  Case study and proposed decontamination steps of the soil and groundwater beneath a closed herbicide plant in Germany , 1989 .

[176]  A. Zehnder,et al.  Biodegradation of Alpha-Hexachlorocyclohexane by a Bacterium Isolated from Polluted Soil , 1988 .

[177]  Lois Levitan,et al.  Pesticides: Amounts Applied and Amounts Reaching Pests , 1986 .

[178]  G. Lamoureux,et al.  Pentachloronitrobenzene metabolism in peanut. 1. Mass spectral characterization of seven glutathione-related conjugates produced in vivo or in vitro. , 1980, Journal of agricultural and food chemistry.

[179]  M. Yamaguchi,et al.  Gamma BHC Degradation Accompanied by the Growth of Clostridium rectum Isolated from Paddy Field Soil , 1978 .

[180]  A. Francis,et al.  Degradation of lindane by Escherichia coli. , 1975, Applied microbiology.

[181]  F. Matsumura,et al.  Isomerization of γ-BHC to α-BHC in the Environment , 1973, Nature.

[182]  I. C. Macrae,et al.  Anaerobic Degradation of the Insecticide Lindane by Clostridium sp. , 1969, Nature.

[183]  H. V. Morley,et al.  Fate of insecticide residues. Decomposition of lindane in soil , 1967 .