Electron spin control of optically levitated nanodiamonds in vacuum

We optically levitated a nanodiamond in partial vacuum and demonstrated electron spin control of its built-in nitrogen-vacancy centers. We observed that the strength of electron spin resonance is enhanced when the air pressure is reduced.

[1]  C. Degen,et al.  Scanning magnetic field microscope with a diamond single-spin sensor , 2008, 0805.1215.

[2]  Yuri N. Palyanov,et al.  Photochromic effect in irradiated and annealed nearly IIa type synthetic diamond , 2000 .

[3]  S. Shikata,et al.  Negatively charged nitrogen-vacancy centers in a 5 nm thin 12C diamond film. , 2013, Nano letters.

[4]  C. Santori,et al.  Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation , 2010, 1001.5449.

[5]  John Kitching,et al.  Short-range force detection using optically cooled levitated microspheres. , 2010, Physical review letters.

[6]  J. Anders,et al.  Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. , 2013, Nature nanotechnology.

[7]  Zhang-qi Yin,et al.  OPTOMECHANICS OF LEVITATED DIELECTRIC PARTICLES , 2013, 1308.4503.

[8]  D. J. Twitchen,et al.  Quantum register based on coupled electron spins in a room-temperature solid. , 2010 .

[9]  M. Stutzmann,et al.  Chemical control of the charge state of nitrogen-vacancy centers in diamond , 2010, 1011.5109.

[10]  Lukas Novotny,et al.  Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond. , 2013, Optics letters.

[11]  F. Jelezko,et al.  Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection , 2012, 1209.0268.

[12]  J. Roch,et al.  Quenching nitrogen–vacancy center photoluminescence with an infrared pulsed laser , 2013, 1302.2154.

[13]  T. Kippenberg,et al.  Cavity Optomechanics , 2013, 1303.0733.

[14]  Lukas Novotny,et al.  Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. , 2012, Physical review letters.

[15]  Gavin W. Morley,et al.  Burning and graphitization of optically levitated nanodiamonds in vacuum , 2015, Scientific Reports.

[16]  William J. Fleming,et al.  Physical Principles Governing Nonideal Behavior of the Zirconia Oxygen Sensor , 1977 .

[17]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[18]  Zhang-qi Yin,et al.  Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling , 2013, 1305.1701.

[19]  Eva von Haartman,et al.  Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond , 2015, Nature Photonics.

[20]  Room-temperature ultrasensitive mass spectrometer via dynamical decoupling , 2013, 1311.2266.

[21]  Nan Zhao,et al.  Hybrid opto-mechanical systems with nitrogen-vacancy centers , 2015, 1501.00636.

[22]  Milos Nesladek,et al.  Photochromism of vacancy-related centres in diamond , 2000 .

[23]  Fast optical modulation of the fluorescence from a single nitrogen–vacancy centre , 2013, 1403.7002.

[24]  J Wrachtrup,et al.  Magnetic spin imaging under ambient conditions with sub-cellular resolution. , 2013, Nature communications.

[25]  Jan Meijer,et al.  Charge state manipulation of qubits in diamond , 2012, Nature Communications.

[26]  Gavin W. Morley,et al.  Matter-wave interferometry of a levitated thermal nano-oscillator induced and probed by a spin. , 2013, Physical review letters.

[27]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[28]  D. E. Changa,et al.  Cavity opto-mechanics using an optically levitated nanosphere , 2009 .

[29]  T. Plakhotnik,et al.  Luminescence of nitrogen-vacancy centers in nanodiamonds at temperatures between 300 and 700 K: perspectives on nanothermometry. , 2010, Physical chemistry chemical physics : PCCP.

[30]  L. Hollenberg,et al.  Electronic properties and metrology applications of the diamond NV- center under pressure. , 2013, Physical review letters.

[31]  M. F. Hamer,et al.  Optical studies of the 1.945 eV vibronic band in diamond , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[32]  Neil B. Manson,et al.  Optically detected spin coherence of the diamond N-V centre in its triplet ground state , 1988 .

[33]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[34]  D. Awschalom,et al.  Engineered micro- and nanoscale diamonds as mobile probes for high-resolution sensing in fluid. , 2014, Nano letters.

[35]  N. D. Lai,et al.  Influence of a static magnetic field on the photoluminescence of an ensemble of nitrogen-vacancy color centers in a diamond single-crystal , 2009, 0908.1327.

[36]  G. Guo,et al.  Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond , 2011 .

[37]  W. Sutherland LII. The viscosity of gases and molecular force , 1893 .

[38]  Raymond G. Beausoleil,et al.  Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing , 2008, 0812.3905.

[39]  Romain Quidant,et al.  Three-dimensional optical manipulation of a single electron spin. , 2013, Nature nanotechnology.

[40]  S. A. Beresnev,et al.  Motion of a spherical particle in a rarefied gas. Part 2. Drag and thermal polarization , 1990, Journal of Fluid Mechanics.

[41]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[42]  D Budker,et al.  Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. , 2009, Physical review letters.

[43]  C. Norris,et al.  Photoluminescence associated with the 1.673, 1.944 and 2.498 eV centres in diamond , 1971 .

[44]  J. Wrachtrup,et al.  Multipartite Entanglement Among Single Spins in Diamond , 2008, Science.

[45]  G. B. The Dynamical Theory of Gases , 1916, Nature.

[46]  Martin B. Plenio,et al.  Testing quantum gravity by nanodiamond interferometry with nitrogen-vacancy centers , 2014, 1403.6038.

[47]  N. Xu,et al.  Effect of heat treatment on the properties of nano-diamond under oxygen and argon ambient , 2002 .

[48]  Mark G. Raizen,et al.  Millikelvin cooling of an optically trapped microsphere in vacuum , 2011, 1101.1283.

[49]  D. D. Awschalom,et al.  Measurement and Control of Single Nitrogen-Vacancy Center Spins above 600 K , 2012, 1201.4420.

[50]  J H N Loubser,et al.  REVIEW: Electron spin resonance in the study of diamond , 1978 .

[51]  Edward H. Chen,et al.  Surface Structure of Aerobically Oxidized Diamond Nanocrystals , 2014, The journal of physical chemistry. C, Nanomaterials and interfaces.

[52]  Christoph Dellago,et al.  Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. , 2014, Nature nanotechnology.

[53]  D. Awschalom,et al.  Excited-state spin coherence of a single nitrogen–vacancy centre in diamond , 2010 .

[54]  Shimon Kolkowitz,et al.  Coherent Sensing of a Mechanical Resonator with a Single-Spin Qubit , 2012, Science.

[55]  A. Geraci,et al.  Detecting high-frequency gravitational waves with optically levitated sensors. , 2012, Physical review letters.

[56]  Neil B. Manson,et al.  Photo-ionization of the nitrogen-vacancy center in diamond , 2005 .

[57]  M. Raizen,et al.  Measurement of the Instantaneous Velocity of a Brownian Particle , 2010, Science.

[58]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[59]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[60]  A. Cleland,et al.  Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds , 2012, Proceedings of the National Academy of Sciences.

[61]  S. Seidelin,et al.  A single NV defect coupled to a nanomechanical oscillator , 2011, 1112.1291.

[62]  Jonghoon Ahn,et al.  Torsional Optomechanics of a Levitated Nonspherical Nanoparticle. , 2016, Physical review letters.

[63]  J. Ignacio Cirac,et al.  Toward quantum superposition of living organisms , 2009, 0909.1469.

[64]  R Kaltenbaek,et al.  Large quantum superpositions and interference of massive nanometer-sized objects. , 2011, Physical review letters.

[65]  R. Schirhagl,et al.  Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. , 2014, Annual review of physical chemistry.

[66]  E. M. Logothetis,et al.  A first-principles model of the zirconia oxygen sensor , 1997 .