Beyond click chemistry - supramolecular interactions of 1,2,3-triazoles.

The research on 1,2,3-triazoles has been lively and ever-growing since its stimulation by the advent of click chemistry. The attractiveness of 1H-1,2,3-triazoles and their derivatives originates from their unique combination of facile accessibility via click chemistry and truly diverse supramolecular interactions, which enabled myriads of applications in supramolecular and coordination chemistry. The nitrogen-rich triazole features a highly polarized carbon atom allowing the complexation of anions by hydrogen and halogen bonding or, in the case of the triazolium salts, via charge-assisted hydrogen and halogen bonds. On the other hand, the triazole offers several N-coordination modes including coordination via anionic and cationic nitrogen donors of triazolate and triazolium ions, respectively. After CH-deprotonation of the triazole and the triazolium, powerful carbanionic and mesoionic carbene donors, respectively, are available. The latter coordination mode even features non-innocent ligand behavior. Moreover, these supramolecular interactions can be combined, e.g., in ion-pair recognition, preorganization by intramolecular hydrogen bond donation and acceptance, and in bimetallic complexes. Ultimately, by clicking two building blocks into place, the triazole emerges as a most versatile functional unit allowing very successful applications, e.g., in anion recognition, catalysis, and photochemistry, thus going far beyond the original purpose of click chemistry. It is the intention of this review to provide a detailed analysis of the various supramolecular interactions of triazoles in comparison to established functional units, which may serve as guidelines for further applications.

[1]  Anjul Kumar,et al.  Synthesis of a bile acid-based click-macrocycle and its application in selective recognition of chloride ion. , 2011, The Journal of organic chemistry.

[2]  M. Sierra,et al.  The "click" reaction involving metal azides, metal alkynes, or both: an exploration into multimetal structures. , 2013, Chemistry.

[3]  Jong Seung Kim,et al.  Ferrocene-based anion receptor bearing amide and triazolium donor groups. , 2012, The Analyst.

[4]  R. Grubbs,et al.  Synthesis of Highly Stable 1,3-Diaryl-1H-1,2,3-triazol-5-ylidenes and their Applications in Ruthenium-Catalyzed Olefin Metathesis. , 2011, Organometallics.

[5]  R. Taft,et al.  The tautomerism of 1,2,3‐triazole, 3(5)‐methylpyrazole and their cations , 1989 .

[6]  U. Schubert,et al.  2-(1H-1,2,3-triazol-4-yl)-pyridine ligands as alternatives to 2,2'-bipyridines in ruthenium(II) complexes. , 2009, Chemistry, an Asian journal.

[7]  John D. Roberts,et al.  Nuclear Magnetic Resonance Spectroscopy. Carbon-13 Spectra of Five-Membered Aromatic Heterocycles , 1968 .

[8]  G. Bertrand,et al.  Crystalline 1H-1,2,3-triazol-5-ylidenes: new stable mesoionic carbenes (MICs). , 2010, Angewandte Chemie.

[9]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[10]  F. R. Benson,et al.  The chemistry of the vicinal triazoles. , 1950, Chemical reviews.

[11]  Zhenyang Lin,et al.  Current understanding of the σ-bond metathesis reactions of LnMR + R′–H → LnMR′ + R–H , 2007 .

[12]  Kendall N. Houk,et al.  Pericyclic Reaction Transition States: Passions and Punctilios, 1935-1995 , 1995 .

[13]  Kwang S. Kim,et al.  Tripodal nitro-imidazolium receptor for anion binding driven by (C-H)+- - -X- hydrogen bonds. , 2002, Organic letters.

[14]  H. Heaney,et al.  Mechanistic Investigations of Copper(I)-Catalysed Alkyne–Azide Cycloaddition Reactions , 2012 .

[15]  A. Spek,et al.  "Click" 1,2,3-triazoles as tunable ligands for late transition metal complexes. , 2007, Dalton transactions.

[16]  A. Comas‐Vives,et al.  How Important Is Backbonding in Metal Complexes Containing N‐Heterocyclic Carbenes? Structural and NBO Analysis , 2011 .

[17]  David N. Reinhoudt,et al.  Noncovalent Synthesis Using Hydrogen Bonding. , 2001, Angewandte Chemie.

[18]  James C. Knight,et al.  Novel Expanded Ring N-Heterocyclic Carbenes: Free Carbenes, Silver Complexes, And Structures , 2008 .

[19]  Raluca M. Fratila,et al.  Triazolium cations: from the “click” pool to multipurpose applications , 2014 .

[20]  D. Venkataraman,et al.  Impact of Pendant 1,2,3-Triazole on the Synthesis and Properties of Thiophene-Based Polymers , 2010 .

[21]  P. Beer,et al.  Enhancement of anion recognition exhibited by a halogen-bonding rotaxane host system. , 2010, Journal of the American Chemical Society.

[22]  J. Zou,et al.  Understanding the magnitude and origin of bidentate charge-assisted halogen bonds of halo-perfluorocarbons and halo-hydrocarbons with halide anions , 2008 .

[23]  G. Rauhut Modulation of reaction barriers by generating reactive intermediates: double proton transfer reactions , 2003 .

[24]  M. Halcrow Iron(II) complexes of 2,6-di(pyrazol-1-yl)pyridines—A versatile system for spin-crossover research , 2009 .

[25]  C. J. McAdam,et al.  fac-Re(CO)3 complexes of 2,6-bis(4-substituted-1,2,3-triazol-1-ylmethyl)pyridine "click" ligands: synthesis, characterisation and photophysical properties. , 2012, Dalton transactions.

[26]  Raghunath O. Ramabhadran,et al.  Aromatic and aliphatic CH hydrogen bonds fight for chloride while competing alongside ion pairing within triazolophanes. , 2011, Chemistry.

[27]  M. Albrecht,et al.  Smooth C(alkyl)-H bond activation in rhodium complexes comprising abnormal carbene ligands. , 2011, Dalton transactions.

[28]  E. Evangelio,et al.  Cycloaddition reactivity studies of first-row transition metal-azide complexes and alkynes: an inorganic click reaction for metalloenzyme inhibitor synthesis. , 2012, Dalton transactions.

[29]  P. C. Young,et al.  Gold(I) and Palladium(II) Complexes of 1,3,4-Trisubstituted 1,2,3-Triazol-5-ylidene “Click” Carbenes: Systematic Study of the Electronic and Steric Influence on Catalytic Activity , 2013, Organometallics.

[30]  J. F. Stoddart,et al.  Reactions under the click chemistry philosophy employed in supramolecular and mechanostereochemical systems. , 2011, Chemistry, an Asian journal.

[31]  Pauline H. Bandeen,et al.  A one pot multi-component CuAAC “click” approach to bidentate and tridentate pyridyl-1,2,3-triazole ligands: Synthesis, X-ray structures and copper(II) and silver(I) complexes , 2010 .

[32]  R. Crabtree Abnormal, mesoionic and remote N-heterocyclic carbene complexes , 2013 .

[33]  Facts and artifacts about aromatic stability estimation , 2003 .

[34]  S. Fukuzawa,et al.  Synthetic, Structural, and Catalytic Studies of Well‐Defined Allyl 1,2,3‐Triazol‐5‐ylidene (tzNHC) Palladium Complexes , 2012 .

[35]  Stefan Hecht,et al.  Helicity inversion in responsive foldamers induced by achiral halide ion guests. , 2008, Angewandte Chemie.

[36]  P. Molina,et al.  Synthesis, structural charaterization, and electrochemical and optical properties of ferrocene-triazole-pyridine triads. , 2011, Inorganic chemistry.

[37]  Jason E Hein,et al.  Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. , 2010, Chemical Society reviews.

[38]  P. Beer,et al.  Anion binding in aqueous media by a tetra-triazolium macrocycle. , 2012, Organic & biomolecular chemistry.

[39]  D. MacMillan,et al.  The advent and development of organocatalysis , 2008, Nature.

[40]  C. Porco,et al.  Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions , 2013, Science.

[41]  S. Díez‐González Well-defined copper(I) complexes for Click azide–alkyne cycloaddition reactions: one Click beyond , 2011 .

[42]  Yu‐Wu Zhong,et al.  Cyclometalated Ruthenium Complexes of 1,2,3‐Triazole‐containing Ligands: Synthesis, Structural Studies, and Electronic Properties , 2013 .

[43]  B. Dietzek,et al.  A heteroleptic bis(tridentate) ruthenium(II) platform featuring an anionic 1,2,3-triazolate-based ligand for application in the dye-sensitized solar cell. , 2014, Inorganic chemistry.

[44]  B. Dietzek,et al.  Physicochemical analysis of ruthenium(II) sensitizers of 1,2,3-triazole-derived mesoionic carbene and cyclometalating ligands. , 2014, Inorganic chemistry.

[45]  Kamrul Hasan,et al.  Panchromic cationic iridium(III) complexes. , 2012, Inorganic chemistry.

[46]  A. Gautier,et al.  Click Chelators for Platinum‐Based Anticancer Drugs , 2008 .

[47]  Kwang Soo Kim,et al.  Cation Affinities of [16]Starand Model. Comparison with 12-Crown-4: Crucial Role of Dipolar Moiety Orientations , 1998 .

[48]  Cheng‐Peng Li,et al.  3,4-Bis(2-pyridyl)-5-(3-pyridyl)-4H-1,2,4-triazole , 2011, Acta crystallographica. Section E, Structure reports online.

[49]  Ashley R. Head,et al.  The electronic states of 1,2,3-triazole studied by vacuum ultraviolet photoabsorption and ultraviolet photoelectron spectroscopy, and a comparison with ab initio configuration interaction methods. , 2011, The Journal of chemical physics.

[50]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[51]  Lei Zhu,et al.  Chelation-assisted, copper(II)-acetate-accelerated azide-alkyne cycloaddition. , 2010, The Journal of organic chemistry.

[52]  Sébastien Ladouceur,et al.  Self-enhanced electrochemiluminescence of an iridium(III) complex: mechanistic insight. , 2012, Angewandte Chemie.

[53]  Ming Li,et al.  A novel anthracene-appended triazolium for fluorescent sensing to H2PO4- , 2013 .

[54]  G. Frenking,et al.  Bonding analysis of N-heterocyclic carbene tautomers and phosphine ligands in transition-metal complexes: a theoretical study. , 2007, Chemistry, an Asian journal.

[55]  G. Bertrand,et al.  Bis(1,2,3-triazol-5-ylidenes) (i-bitz) as Stable 1,4-Bidentate Ligands Based on Mesoionic Carbenes (MICs). , 2011, Organometallics.

[56]  P. Thordarson Determining association constants from titration experiments in supramolecular chemistry. , 2011, Chemical Society reviews.

[57]  J. Reek,et al.  "Clickphine": a novel and highly versatile P,N ligand class via click chemistry. , 2006, Organic letters.

[58]  H. Huynh,et al.  Pyrazolin-4-ylidenes: a new class of intriguing ligands. , 2011, Dalton transactions.

[59]  R. Taft,et al.  Basicity and acidity of azoles: the annelation effect in azoles , 1988 .

[60]  M. Chudziński,et al.  Halogen bonding in solution: thermodynamics and applications. , 2013, Chemical Society reviews.

[61]  Michael J. Ferguson,et al.  Unsymmetrical Dicarbenes Based on N-Heterocyclic/Mesoionic Carbene Frameworks: A Stepwise Metalation Strategy for the Generation of a Dicarbene-Bridged Mixed-Metal Pd/Rh Complex , 2012 .

[62]  M. Grzywa,et al.  Photophysical properties of Kuratowski-type coordination compounds [M(II)Zn4Cl4(Me2bta)6] (M(II) = Zn or Ru) featuring long-lived excited electronic states. , 2011, Dalton transactions.

[63]  R. Bertani,et al.  Synthesis, crystal structure, solution behavior and catalytic activity of a palladium(II)-allyl complex containing a 2-pyridyl-1,2,3-triazole bidentate ligand , 2011 .

[64]  I. Turel,et al.  Pyridyl Conjugated 1,2,3-Triazole is a Versatile Coordination Ability Ligand Enabling Supramolecular Associations , 2010 .

[65]  J. Elguero,et al.  1,2-Proton shifts in pyrazole and related systems: a computational study of [1,5]-sigmatropic migrations of hydrogen and related phenomena† , 1998 .

[66]  M. Orchin,et al.  Preparation, reactions, and infrared spectra of fac-(CO)3(P-P) Mn—Z complexes (P-P = DEPE, DPPE, DPPP; Z = H, OTs, OMe, OC(O) OMe, NCO, Cl, Br, N3) , 1997 .

[67]  P. Beer,et al.  Strategic anion templation , 2006 .

[68]  P. Beer,et al.  Iodo-imidazolium salts: halogen bonding in crystals and anion-templated pseudorotaxanes , 2013 .

[69]  G. Cerullo,et al.  Femtosecond Dynamics of Excited-State Evolution in [Ru(bpy)3]2+ , 1997, Science.

[70]  B. Dietzek,et al.  A heteroleptic bis(tridentate) ruthenium(II) complex of a click-derived abnormal carbene pincer ligand with potential for photosensitzer application. , 2011, Chemistry.

[71]  B. Sarkar,et al.  Arene–Ruthenium(II) and −Iridium(III) Complexes with “Click”-Based Pyridyl-triazoles, Bis-triazoles, and Chelating Abnormal Carbenes: Applications in Catalytic Transfer Hydrogenation of Nitrobenzene , 2013 .

[72]  A. Rowan,et al.  Triazole–pyridine ligands: a novel approach to chromophoric iridium arrays , 2011 .

[73]  P. Steel,et al.  4,5-di(2-pyridyl)-1,2,3-triazolate: the elusive member of a family of bridging ligands that facilitate strong metal-metal interactions. , 2008, Dalton transactions.

[74]  S. Nolan,et al.  N-heterocyclic carbenes in late transition metal catalysis. , 2009, Chemical reviews.

[75]  C. Katan,et al.  New chromophores from click chemistry for two-photon absorption and tuneable photoluminescence. , 2005, Chemical communications.

[76]  M. E. Hermes,et al.  1-Cyano-1,2,3-triazole-.alpha.-diazo-N-cyanoimine tautomers from cyanogen azide and acetylenes , 1967 .

[77]  U. Schubert,et al.  Cyclometalated ruthenium(II) complexes featuring tridentate click-derived ligands for dye-sensitized solar cell applications. , 2013, Chemistry.

[78]  M. Albrecht,et al.  Carbene transfer from triazolylidene gold complexes as a potent strategy for inducing high catalytic activity. , 2013, Journal of the American Chemical Society.

[79]  Fuyi Wang,et al.  Folding and aggregation of cationic oligo(aryl-triazole)s in aqueous solution. , 2009, Chemistry.

[80]  C. Moucheron,et al.  Ru-TAP complexes with btz and pytz ligands: novel candidates as photooxidizing agents. , 2011, Dalton transactions.

[81]  A. Ponti,et al.  Arylazide cycloaddition to methyl propiolate: DFT-based quantitative prediction of regioselectivity. , 2003, Chemistry.

[82]  R. Eisenberg,et al.  Photoluminescent copper(I) complexes with amido-triazolato ligands. , 2011, Inorganic chemistry.

[83]  D. Enders,et al.  Organocatalysis by N-heterocyclic carbenes. , 2007, Chemical reviews.

[84]  M. Ostermeier,et al.  Complexes of click-derived bistriazolylpyridines: remarkable electronic influence of remote substituents on thermodynamic stability as well as electronic and magnetic properties. , 2010, Chemistry.

[85]  R. Hogg,et al.  57. Exchange studies of certain chelate compounds of the transitional metals. Part VIII. 2,2′,2″-terpyridine complexes , 1962 .

[86]  Alessandra Magistrato,et al.  Binding of novel azole-bridged dinuclear platinum(II) anticancer drugs to DNA: insights from hybrid QM/MM molecular dynamics simulations. , 2006, The journal of physical chemistry. B.

[87]  S. Hidalgo-Bonilla,et al.  Coordination diversity of aluminum centers molded by triazole based chalcogen ligands. , 2009, Inorganic chemistry.

[88]  B. König,et al.  Synthesis, Characterisation and Ligand Properties of Novel Bi-1,2,3-triazole Ligands , 2007 .

[89]  Mohammed G. Sarwar,et al.  Thermodynamics of halogen bonding in solution: substituent, structural, and solvent effects. , 2010, Journal of the American Chemical Society.

[90]  G. Bertrand,et al.  Anionic 1,2,3-triazole-4,5-diylidene: a 1,2-dihapto ligand for the construction of bimetallic complexes. , 2012, Chemistry.

[91]  J. Alderete,et al.  Complete basis set calculations on the tautomerism and protonation of triazoles and tetrazole , 2006 .

[92]  M. Albrecht Cyclometalation using d-block transition metals: fundamental aspects and recent trends. , 2010, Chemical reviews.

[93]  Paul A. Bartlett,et al.  CAVEAT: A program to facilitate the design of organic molecules , 1994, J. Comput. Aided Mol. Des..

[94]  V. Bertolasi,et al.  Evidence for resonance-assisted hydrogen bonding. 4. Covalent nature of the strong homonuclear hydrogen bond. Study of the O-H--O system by crystal structure correlation methods , 1994 .

[95]  D. Ramachary,et al.  Amino acid-catalyzed cascade [3+2]-cycloaddition/hydrolysis reactions based on the push-pull dienamine platform: synthesis of highly functionalized NH-1,2,3-triazoles. , 2008, Chemistry.

[96]  F. Proft,et al.  Conformational fluxionality in a palladium(II) complex of flexible click chelator 4-phenyl-1-(2-picolyl)-1,2,3-triazole: A dynamic NMR and DFT study , 2011 .

[97]  K. Abboud,et al.  1,3-Dipolar cycloaddition between a metal-azide (Ph3PAuN3) and a metal-acetylide (Ph3PAuC≡CPh): an inorganic version of a click reaction. , 2011, Dalton transactions.

[98]  Xile Hu,et al.  Group 11 Metal Complexes of N-Heterocyclic Carbene Ligands: Nature of the Metal-Carbene Bond , 2004 .

[99]  M. Erdélyi,et al.  Halogen bonding in solution. , 2012, Chemical Society reviews.

[100]  Keiji Hirose A Practical Guide for the Determination of Binding Constants , 2001 .

[101]  R. Sustmann Orbital energy control of cycloaddition reactivity , 1974 .

[102]  M. Ostermeier,et al.  Multifunctional "clickates" as versatile extended heteroaromatic building blocks: efficient synthesis via click chemistry, conformational preferences, and metal coordination. , 2007, Chemistry.

[103]  S. Faulkner,et al.  Synthesis and Spectroscopic Study of d–f Hybrid Lanthanide Complexes Derived from triazolylDO3A , 2012 .

[104]  P. Geerlings,et al.  Conceptual DFT: the chemical relevance of higher response functions. , 2008, Physical chemistry chemical physics : PCCP.

[105]  G. Tamasi,et al.  A molecular orbital study of C–H···Cl– and N–H···Cl– hydrogen bonds. Inferences on selected metal complexes and on protein ClC Cl– channels , 2005 .

[106]  J. Bartmess,et al.  Equilibrium acidities of carbon acids. VI. Establishment of an absolute scale of acidities in dimethyl sulfoxide solution , 1975 .

[107]  G. Himbert,et al.  Untersuchungen an Diazoverbindungen und Aziden, XXV1) Azid‐Additionen an (Silyäthinyl)‐, (Germyläthinyl)‐ und (Stannyläthinyl)amine , 1976 .

[108]  C. Bruneau,et al.  Autocatalytic intermolecular versus intramolecular deprotonation in C-H bond activation of functionalized arenes by ruthenium(II) or palladium(II) complexes. , 2013, Chemistry.

[109]  R. Breinbauer,et al.  The Staudinger ligation-a gift to chemical biology. , 2004, Angewandte Chemie.

[110]  J. Sessler,et al.  A pyrrolyl-based triazolophane: a macrocyclic receptor with CH and NH donor groups that exhibits a preference for pyrophosphate anions. , 2010, Journal of the American Chemical Society.

[111]  Olena V. Zenkina,et al.  Synthesis and Structure of Palladium 1,2,3-Triazol-5-ylidene Mesoionic Carbene PEPPSI Complexes and Their Catalytic Applications in the Mizoroki–Heck Reaction , 2012 .

[112]  P. Beer,et al.  Crystallographic Implications for the Design of Halogen Bonding Anion Receptors , 2011 .

[113]  Lei Zhu,et al.  Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. , 2011, Journal of the American Chemical Society.

[114]  U. Schubert,et al.  Anion complexation by triazolium "ligands": mono- and bis-tridentate complexes of sulfate. , 2010, Organic letters.

[115]  K. Sharpless,et al.  Polytriazoles as copper(I)-stabilizing ligands in catalysis. , 2004, Organic letters.

[116]  K. Hagen,et al.  Iron(II) triflate salts as convenient substitutes for perchlorate salts: crystal structures of [Fe(H2O)6](CF3SO3)2 and Fe(MeCN)4(CF3SO3)2. , 2000, Inorganic chemistry.

[117]  G. Schmid,et al.  Positively Charged Iridium(III) Triazole Derivatives as Blue Emitters for Light‐Emitting Electrochemical Cells , 2010 .

[118]  C. A. Ramsden,et al.  The influence of aza-substitution on azole aromaticity , 2010 .

[119]  J. Abboud,et al.  Tautomerism and aromaticity in 1,2,3-triazoles: the case of benzotriazole , 1989 .

[120]  P. Metrangolo,et al.  2-Iodo-imidazolium receptor binds oxoanions via charge-assisted halogen bonding. , 2012, Organic & biomolecular chemistry.

[121]  G. L'abbé,et al.  Reactions of aryl azides with α-keto phosphorus ylides , 1971 .

[122]  H. Hiemstra,et al.  CuI‐Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective , 2005 .

[123]  N. Akhmedov,et al.  1,2,3-triazole: unique ligand in promoting iron-catalyzed propargyl alcohol dehydration. , 2012, Organic letters.

[124]  D. Richens Ligand substitution reactions at inorganic centers. , 2005, Chemical reviews.

[125]  J. Reek,et al.  Click-chemistry as an efficient synthetic tool for the preparation of novel conjugated polymers. , 2005, Chemical communications.

[126]  L. García-Escudero,et al.  Beyond click chemistry: spontaneous C-triazolyl transfer from copper to rhenium and transformation into mesoionic C-triazolylidene carbene. , 2012, Chemical communications.

[127]  X. Duan,et al.  Porous, conductive metal-triazolates and their structural elucidation by the charge-flipping method. , 2012, Chemistry.

[128]  Duncan M. Tooke,et al.  Consequences of N,C,N'- and C,N,N'-coordination modes on electronic and photophysical properties of cyclometalated aryl ruthenium(II) complexes. , 2009, Inorganic chemistry.

[129]  Carolyn R. Bertozzi,et al.  Reactivity of Biarylazacyclooctynones in Copper-Free Click Chemistry , 2012, Journal of the American Chemical Society.

[130]  Chang-Hee Lee,et al.  Benzene-, pyrrole-, and furan-containing diametrically strapped calix[4]pyrroles--an experimental and theoretical study of hydrogen-bonding effects in chloride anion recognition. , 2008, Angewandte Chemie.

[131]  M. Todd,et al.  Chemical sensors that incorporate click-derived triazoles. , 2011, Chemical Society reviews.

[132]  Gautam R Desiraju,et al.  Hydrogen bridges in crystal engineering: interactions without borders. , 2002, Accounts of chemical research.

[133]  M. Albrecht,et al.  Methyltransferase activity of an iridium center with methylpyridinium as methylene source. , 2011, Angewandte Chemie.

[134]  Henry A. Bent,et al.  An Appraisal of Valence-bond Structures and Hybridization in Compounds of the First-row elements. , 1961 .

[135]  D. Denux,et al.  The Clicked Pyridyl‐Triazole Ligand: From Homogeneous to Robust, Recyclable Heterogeneous Mono‐ and Polymetallic Palladium Catalysts for Efficient Suzuki–Miyaura, Sonogashira, and Heck Reactions , 2013 .

[136]  S. Sankararaman,et al.  Synthesis and Structure of 1,4-Diphenyl-3-methyl-1,2,3-triazol-5-ylidene Palladium Complexes and Application in Catalytic Hydroarylation of Alkynes , 2011 .

[137]  D. Lastécouères,et al.  A highly active and reusable copper(I)-tren catalyst for the "click" 1,3-dipolar cycloaddition of azides and alkynes. , 2008, Chemical communications.

[138]  M. Albrecht,et al.  Bimetallic Iridium–Carbene Complexes with Mesoionic Triazolylidene Ligands for Water Oxidation Catalysis , 2014 .

[139]  Gernot Frenking,et al.  Understanding the nature of the bonding in transition metal complexes: from Dewar's molecular orbital model to an energy partitioning analysis of the metal–ligand bond ☆ , 2001 .

[140]  B. Straub µ-Acetylide and µ-alkenylidene ligands in “click” triazole syntheses , 2007 .

[141]  G. Desiraju,et al.  A crystallographic scale of carbon acidity , 1992 .

[142]  C. J. McAdam,et al.  fac-Re(CO)3Cl Complexes of [2-(4-R-1H-1,2,3-Triazol-1-yl)methyl]pyridine Inverse “Click” Ligands: A Systematic Synthetic, Spectroscopic, and Computational Study , 2013 .

[143]  I. Jano Comparison between approximate methods for calculating ionization potentials and the use of .sigma.-ionization potentials as a measure of relative basicity of azoles , 1991 .

[144]  Raghunath O. Ramabhadran,et al.  From atomic to molecular anions: a neutral receptor captures cyanide using strong C-H hydrogen bonds. , 2011, Chemistry.

[145]  Raluca M. Fratila,et al.  "Click" synthesis of nonsymmetrical bis(1,2,3-triazoles). , 2010, Organic letters.

[146]  P. Schreiner Metal-free organocatalysis through explicit hydrogen bonding interactions. , 2003, Chemical Society reviews.

[147]  George M. Whitesides,et al.  Using a Convenient, Quantitative Model for Torsional Entropy To Establish Qualitative Trends for Molecular Processes That Restrict Conformational Freedom , 1998 .

[148]  J. Selegue Metallacumulenes: from vinylidenes to metal polycarbides , 2004 .

[149]  Massimo Marcaccio,et al.  Green and blue electrochemically generated chemiluminescence from click chemistry--customizable iridium complexes. , 2011, Chemistry.

[150]  L. Cavallo,et al.  π-Acidity and π-basicity of N-heterocyclic carbene ligands. A computational assessment , 2006 .

[151]  T. Ooi,et al.  Chiral 1,2,3-triazoliums as new cationic organic catalysts with anion-recognition ability: application to asymmetric alkylation of oxindoles. , 2011, Journal of the American Chemical Society.

[152]  S. Nolan,et al.  Stereoelectronic parameters associated with N-heterocyclic carbene (NHC) ligands: A quest for understanding , 2007 .

[153]  O. Hassel,et al.  Structural aspects of interatomic charge-transfer bonding. , 1970, Science.

[154]  Rudi van Eldik,et al.  Control of Iron(II) Spin States in 2,2′:6′,2″‐Terpyridine Complexes through Ligand Substitution , 1999 .

[155]  K. Houk Frontier molecular orbital theory of cycloaddition reactions , 1975 .

[156]  Hui Li,et al.  Energy decomposition analysis of covalent bonds and intermolecular interactions. , 2009, The Journal of chemical physics.

[157]  G. P. V. van Klink,et al.  The mechanism of the modified Ullmann reaction. , 2010, Dalton transactions.

[158]  L. MacGillivray,et al.  pH-controlled coordination mode rearrangements of "clickable" Huisgen-based multidentate ligands with [M(I)(CO)3]+ (M = Re, (99m)Tc). , 2013, Inorganic chemistry.

[159]  Rajadurai Chandrasekar,et al.  "Super hybrid tridentate ligands": 4-substituted-2-(1-butyl-1H-1,2,3-triazol-4-yl)-6-(1H-pyrazol-1-yl)pyridine ligands coordinated to Fe(ii) ions display above room temperature spin transitions. , 2010, Dalton transactions.

[160]  B. Sarkar,et al.  New 1,2,3-triazole ligands through click reactions and their palladium and platinum complexes. , 2009, Dalton transactions.

[161]  N. Peruchena,et al.  Halogen bonding: a study based on the electronic charge density. , 2010, The journal of physical chemistry. A.

[162]  L. Moro,et al.  Estrogenic Analogues Synthesized by Click Chemistry , 2007, ChemMedChem.

[163]  M. Albrecht,et al.  Mesoionic oxides: facile access from triazolium salts or triazolylidene copper precursors, and catalytic relevance. , 2012, Chemical communications.

[164]  V. Fokin,et al.  Copper-catalyzed reaction cascade: direct conversion of alkynes into N-sulfonylazetidin-2-imines. , 2006, Angewandte Chemie.

[165]  W. Connick,et al.  Tuning the electronic structures of platinum(II) complexes with a cyclometalating aryldiamine ligand. , 2004, Inorganic chemistry.

[166]  A. O’Donoghue,et al.  Proton transfer reactions of triazol-3-ylidenes: kinetic acidities and carbon acid pKa values for twenty triazolium salts in aqueous solution. , 2012, Journal of the American Chemical Society.

[167]  Eric D. Glendening,et al.  Natural energy decomposition analysis: Explicit evaluation of electrostatic and polarization effects with application to aqueous clusters of alkali metal cations and neutrals , 1996 .

[168]  O. Dimroth Ueber intramolekulare Umlagerungen. Umlagerungen in der Reihe des 1, 2, 3‐Triazols , 1909 .

[169]  S. Sankararaman,et al.  Synthesis and structural characterization of cis isomer of 1,2,3-triazol-5-ylidene based palladium complexes , 2013 .

[170]  M. Botoshansky,et al.  1,2,3-Triazolylidene based complexes via post-modification of pincer click ligands. , 2011, Dalton transactions.

[171]  J. Lenhardt,et al.  Anion binding of short, flexible aryl triazole oligomers. , 2009, The Journal of organic chemistry.

[172]  V. Fokin,et al.  Copper(I)-catalyzed cycloaddition of bismuth(III) acetylides with organic azides: synthesis of stable triazole anion equivalents. , 2013, Angewandte Chemie.

[173]  A. Geist,et al.  A TRLFS study on the complexation of novel BTP type ligands with Cm(III). , 2013, Dalton transactions.

[174]  M. Albrecht,et al.  Synthesis and catalytic alcohol oxidation and ketone transfer hydrogenation activity of donor-functionalized mesoionic triazolylidene ruthenium(II) complexes. , 2014, Dalton transactions.

[175]  M. Albrecht,et al.  Regioselective electrophilic C-H bond activation in triazolylidene metal complexes containing a N-bound phenyl substituent , 2012 .

[176]  P. Armentrout,et al.  Absolute alkali metal ion binding affinities of several azoles determined by threshold collision-induced dissociation , 1999 .

[177]  Günter Szeimies,et al.  1.3-Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC-Mehrfachbindungen , 1967 .

[178]  M. Albrecht,et al.  Oxidations and Oxidative Couplings Catalyzed by Triazolylidene Ruthenium Complexes , 2011 .

[179]  Pierangelo Metrangolo,et al.  Halogen bonding in supramolecular chemistry. , 2008, Angewandte Chemie.

[180]  Philip A. Gale,et al.  Anion Recognition and Sensing: The State of the Art and Future Perspectives. , 2001, Angewandte Chemie.

[181]  R. Sustmann,et al.  Substituent Effects in 1,3‐Dipolar Cycloadditions of Phenyl Azide , 1972 .

[182]  Fahmi Himo,et al.  Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. , 2005, Journal of the American Chemical Society.

[183]  M. Nguyen,et al.  Regiochemistry of 1,3-dipolar cycloadditions between azides and substituted ethylenes: a theoretical study , 1999 .

[184]  K N Houk,et al.  Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models. , 2008, Journal of the American Chemical Society.

[185]  Alois Fürstner,et al.  Catalytic carbophilic activation: catalysis by platinum and gold pi acids. , 2007, Angewandte Chemie.

[186]  U. Pietsch,et al.  Inducing spin crossover in metallo-supramolecular polyelectrolytes through an amphiphilic phase transition. , 2005, Journal of the American Chemical Society.

[187]  O. Kühl Sterically induced differences in N-heterocyclic carbene transition metal complexes , 2009 .

[188]  Paul I. P. Elliott,et al.  Synthesis and characterisation of luminescent rhenium tricarbonyl complexes with axially coordinated 1,2,3-triazole ligands. , 2011, Dalton transactions.

[189]  K. Houk,et al.  Conceptual, Qualitative, and Quantitative Theories of 1,3‐Dipolar and Diels–Alder Cycloadditions Used in Synthesis , 2006 .

[190]  Ronald Breslow,et al.  Hydrophobic Effects on Simple Organic Reactions in Water , 1991 .

[191]  Thomas S. Teets,et al.  Copper-Catalyzed Huisgen [3 + 2] Cycloaddition of Gold(I) Alkynyls with Benzyl Azide. Syntheses, Structures, and Optical Properties , 2009 .

[192]  Zhan-Ting Li,et al.  A 1,4-diphenyl-1,2,3-triazole-based β-turn mimic constructed by click chemistry. , 2012, The Journal of organic chemistry.

[193]  M. Albrecht,et al.  1,2,3-Triazolylidenes as versatile abnormal carbene ligands for late transition metals. , 2008, Journal of the American Chemical Society.

[194]  Stefan Bräse,et al.  Organic azides: an exploding diversity of a unique class of compounds. , 2005, Angewandte Chemie.

[195]  B. Kirchner,et al.  Locality and Fluctuations: Trends in Imidazolium-Based Ionic Liquids and Beyond. , 2011, Journal of chemical theory and computation.

[196]  A. Slawin,et al.  AAAA-DDDD quadruple hydrogen-bond arrays featuring NH···N and CH···N hydrogen bonds. , 2013, Journal of the American Chemical Society.

[197]  Rolf Heusgen Mechanism of 1,3-dipolar cycloadditions. Reply , 1968 .

[198]  S. Fukuzawa,et al.  Copper(I) 1,2,3-triazol-5-ylidene complexes as efficient catalysts for click reactions of azides with alkynes. , 2011, Organic letters.

[199]  Yuefei Hu,et al.  Copper(I) Acetate: A Structurally Simple but Highly Efficient Dinuclear Catalyst for Copper‐Catalyzed Azide‐Alkyne Cycloaddition , 2010 .

[200]  A. O’Donoghue,et al.  pKas of the conjugate acids of N-heterocyclic carbenes in water. , 2011, Chemical communications.

[201]  C. J. McAdam,et al.  Rhenium(I) complexes of readily functionalized bidentate pyridyl-1,2,3-triazole “click” ligands: A systematic synthetic, spectroscopic and computational study , 2013 .

[202]  S. Weinreb,et al.  A study of the scope and regioselectivity of the ruthenium-catalyzed [3 + 2]-cycloaddition of azides with internal alkynes. , 2006, The Journal of organic chemistry.

[203]  P. Hilbers,et al.  Understanding cooperativity in hydrogen-bond-induced supramolecular polymerization: a density functional theory study. , 2010, The journal of physical chemistry. B.

[204]  S. Fukuzawa,et al.  Position-selective intramolecular aromatic C-H bond activation of 1,2,3-triazol-5-ylidene (tzNHC) ligands in (p-cymene)ruthenium(II) complexes. , 2013, Dalton transactions.

[205]  G. Bertrand,et al.  Stability and electronic properties of imidazole-based mesoionic carbenes. , 2011, Chemistry.

[206]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[207]  J. Baltaze,et al.  Iron coordination chemistry with new ligands containing triazole and pyridine moieties. Comparison of the coordination ability of the N-donors. , 2013, Inorganic chemistry.

[208]  M. Ward,et al.  Enhancement of luminescence lifetimes of mononuclear ruthenium(II)-terpyridine complexes by manipulation of the sigma-donor strength of ligands. , 2003, Inorganic chemistry.

[209]  A. Slawin,et al.  Coordinatively unsaturated ruthenium complexes as efficient alkyne-azide cycloaddition catalysts , 2012 .

[210]  A. Flood,et al.  Pure C-H hydrogen bonding to chloride ions: a preorganized and rigid macrocyclic receptor. , 2008, Angewandte Chemie.

[211]  L. Delle Site,et al.  Study of 1,3-dimethylimidazolium chloride with electronic structure methods and force field approaches. , 2008, The Journal of chemical physics.

[212]  G. Frenking,et al.  The Nature of the Metal–Carbene Bond in Normal and Abnormal Pyridylidene, Quinolylidene and Isoquinolylidene Complexes , 2009 .

[213]  E. Cuevas-Yáñez,et al.  Effect of temperature on triazole and bistriazole formation through copper-catalyzed alkyne–azide cycloaddition , 2011 .

[214]  Ying Li,et al.  Dual-functional click-triazole: a metal chelator and immobilization linker for the construction of a heterogeneous palladium catalyst and its application for the aerobic oxidation of alcohols. , 2012, Chemical communications.

[215]  M. Albrecht,et al.  PEPPSI-type palladium complexes containing basic 1,2,3-triazolylidene ligands and their role in Suzuki-Miyaura catalysis. , 2012, Chemistry.

[216]  Q. Cai,et al.  A CuAAC/Ullmann C-C coupling tandem reaction: copper-catalyzed reactions of organic azides with N-(2-iodoaryl)propiolamides or 2-iodo-N-(prop-2-ynyl)benzenamines. , 2012, Organic letters.

[217]  T. Seo,et al.  1,3-Dipolar cycloaddition of azides with electron-deficient alkynes under mild condition in water , 2004 .

[218]  Peter Mayer,et al.  Isolation of a copper(I) triazolide: a "click" intermediate. , 2007, Angewandte Chemie.

[219]  C. Caumes,et al.  The click triazolium peptoid side chain: a strong cis-amide inducer enabling chemical diversity. , 2012, Journal of the American Chemical Society.

[220]  M. J. Calhorda,et al.  Mechanism for the cyclotrimerization of alkynes and related reactions catalyzed by CpRuCl. , 2003, Journal of the American Chemical Society.

[221]  F. Glorius,et al.  The measure of all rings--N-heterocyclic carbenes. , 2010, Angewandte Chemie.

[222]  K. Raghavachari,et al.  Strong CH...halide hydrogen bonds from 1,2,3-triazoles quantified using pre-organized and shape-persistent triazolophanes. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[223]  F. Siu,et al.  Absolute potassium cation affinities (PCAs) in the gas phase. , 2003, Chemistry.

[224]  A. Kokalj,et al.  DFT Study of Interaction of Azoles with Cu(111) and Al(111) Surfaces: Role of Azole Nitrogen Atoms and Dipole–Dipole Interactions , 2011 .

[225]  E. Benoist,et al.  Tricarbonylrhenium complexes from 2-pyridyl-1,2,3-triazole ligands bearing a 4-substituted phenyl arm: a combined experimental and theoretical study. , 2013, Dalton transactions.

[226]  J. Slinker,et al.  Blue light emitting electrochemical cells incorporating triazole-based luminophores , 2013 .

[227]  A. B. P. Lever,et al.  Electrochemical parametrization of metal complex redox potentials, using the ruthenium(III)/ruthenium(II) couple to generate a ligand electrochemical series , 1990 .

[228]  R. Schibli,et al.  "Click to chelate": synthesis and installation of metal chelates into biomolecules in a single step. , 2006, Journal of the American Chemical Society.

[229]  Rubicelia Vargas,et al.  How Strong Is the Cα−H···OC Hydrogen Bond? , 2000 .

[230]  U. Schubert,et al.  N-heterocyclic donor- and acceptor-type ligands based on 2-(1H-[1,2,3]triazol-4-yl)pyridines and their ruthenium(II) complexes. , 2010, The Journal of organic chemistry.

[231]  P. Beer,et al.  Expanding the scope of the anion templated synthesis of interlocked structures. , 2013, Accounts of chemical research.

[232]  A. Flood,et al.  Strong, size-selective, and electronically tunable C-H...halide binding with steric control over aggregation from synthetically modular, shape-persistent [34]triazolophanes. , 2008, Journal of the American Chemical Society.

[233]  Maoguo Li,et al.  Organocatalytic enamide-azide cycloaddition reactions: regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazoles. , 2011, Chemistry.

[234]  D. Ramachary,et al.  Organocatalytic triazole formation, followed by oxidative aromatization: regioselective metal-free synthesis of benzotriazoles. , 2013, Chemistry.

[235]  L. Maron,et al.  Tricarbonyl ReI Complexes from Functionalised Pyridine–Triazole Derivatives: From Mononuclear to Unexpected Dimeric Complexes , 2010 .

[236]  Lei Zhu,et al.  Structurally diverse copper(II) complexes of polyaza ligands containing 1,2,3-triazoles: site selectivity and magnetic properties. , 2012, Inorganic chemistry.

[237]  H. Deng,et al.  An acidity scale of 1,3-dialkylimidazolium salts in dimethyl sulfoxide solution. , 2007, The Journal of organic chemistry.

[238]  M. Iron,et al.  Nitrenium ions as ligands for transition metals. , 2011, Nature chemistry.

[239]  M. Albrecht,et al.  On the electronic impact of abnormal C4-bonding in N-heterocyclic carbene complexes. , 2009, Chemistry.

[240]  I. Turel,et al.  Click-triazole N2 coordination to transition-metal ions is assisted by a pendant pyridine substituent. , 2010, Inorganic chemistry.

[241]  Paulo J. Costa,et al.  Halogen bond anion templated assembly of an imidazolium pseudorotaxane. , 2010, Angewandte Chemie.

[242]  R. Huisgen 1,3-Dipolar Cycloadditions. Past and Future† , 1963 .

[243]  Cyril Bressy,et al.  Organocatalytic synthesis of 1,2,3-triazoles from unactivated ketones and arylazides. , 2011, Chemistry.

[244]  P. Bäuerle,et al.  Thiophene-based donor–acceptor co-oligomers by copper-catalyzed 1,3-dipolar cycloaddition , 2012, Beilstein journal of organic chemistry.

[245]  Zhan-Ting Li,et al.  C-H···O hydrogen bonding induced triazole foldamers: efficient halogen bonding receptors for organohalogens. , 2012, Angewandte Chemie.

[246]  Balazs Pinter,et al.  Halogen bonding from a hard and soft acids and bases perspective: investigation by using density functional theory reactivity indices. , 2013, Chemistry.

[247]  David J. Nesbitt,et al.  Definition of the hydrogen bond (IUPAC Recommendations 2011) , 2011 .

[248]  Bernhard Metz,et al.  Breakdown of Bond Length-Bond Strength Correlation: A Case Study This work was supported by Deutsche Forschungsgemeinschaft and by Fonds der Chemischen Industrie. , 2000, Angewandte Chemie.

[249]  V. Bertolasi,et al.  Predicting hydrogen-bond strengths from acid-base molecular properties. The pK(a) slide rule: toward the solution of a long-lasting problem. , 2009, Accounts of chemical research.

[250]  Yoshinori Yamamoto,et al.  Four-component coupling reactions of silylacetylenes, allyl carbonates, and trimethylsilyl azide catalyzed by a Pd(0)–Cu(I) bimetallic catalyst. Fully substituted triazole synthesis from seemingly internal alkynes , 2004 .

[251]  Y.-W. Kim,et al.  Statics and dynamics of strongly charged soft matter , 2005 .

[252]  M. Albrecht,et al.  Synthesis, photo-, and electrochemistry of ruthenium bis(bipyridine) complexes comprising a N-heterocyclic carbene ligand. , 2013, Inorganic chemistry.

[253]  H. V. Rasika Dias,et al.  Copper and silver complexes containing organic azide ligands: syntheses, structures, and theoretical investigation of [HB(3,5-(CF3)2Pz)3]CuNNN(1-Ad) and [HB(3,5-(CF3)2Pz)3]AgN(1-Ad)NN (where Pz = pyrazolyl and 1-Ad = 1-adamantyl). , 2000, Inorganic chemistry.

[254]  Electrostatic properties of liquid 1,3-dimethylimidazolium chloride: role of local polarization and effect of the bulk. , 2010, Physical chemistry chemical physics : PCCP.

[255]  M. Ferguson,et al.  Di-Mesoionic Carbene-Bridged Complexes of Rh2, Ir2, and RhIr: A Stepwise Metalation Strategy for the Synthesis of di-MIC-Bridged Mixed-Metal Systems , 2012 .

[256]  Lei Zhu,et al.  Synthesis of 5-iodo-1,4-disubstituted-1,2,3-triazoles mediated by in situ generated copper(I) catalyst and electrophilic triiodide ion. , 2012, The Journal of organic chemistry.

[257]  M. Carcelli,et al.  A convenient method for the preparation of 3-(2-pyridyl)triazolo[1,5-a]pyridine (L). Crystal structures of L and [CuL2(OH2)2][NO3]2 , 1994 .

[258]  Kenichi Fukui,et al.  A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons , 1952 .

[259]  P. Geerlings,et al.  Conceptual density functional theory. , 2003, Chemical reviews.

[260]  A. Flood,et al.  1,2,3-Triazoles and the Expanding Utility of Charge Neutral CH···Anion Interactions , 2010 .

[261]  V. Fokin,et al.  Enhanced Reactivity of Dinuclear Copper(I) Acetylides in Dipolar Cycloadditions , 2007 .

[262]  P. Beer,et al.  A catenane host system containing integrated triazole C-H hydrogen bond donors for anion recognition. , 2012, Chemical communications.

[263]  R. Crabtree,et al.  A READILY AVAILABLE NON-PREORGANIZED NEUTRAL ACYCLIC HALIDE RECEPTOR WITH AN UNUSUAL NONPLANAR BINDING CONFORMATION , 1997 .

[264]  H. Huynh,et al.  1,2,3-Triazolin-5-ylidenes: Synthesis of Hetero-bis(carbene) Pd(II) Complexes, Determination of Donor Strengths, and Catalysis , 2012 .

[265]  Khuong Q. Vuong,et al.  Catalyzed tandem C-N/C-C bond formation for the synthesis of tricyclic indoles using Ir(III) pyrazolyl-1,2,3-triazolyl complexes , 2012 .

[266]  M. Botoshansky,et al.  Pincer click ligands. , 2008, Angewandte Chemie.

[267]  D. Astruc,et al.  "Click" dendrimers: synthesis, redox sensing of Pd(OAc)2, and remarkable catalytic hydrogenation activity of precise Pd nanoparticles stabilized by 1,2,3-triazole-containing dendrimers. , 2008, Chemistry.

[268]  E. Gibson,et al.  Synthesis, characterisation and theoretical study of ruthenium 4,4'-bi-1,2,3-triazolyl complexes: fundamental switching of the nature of S1 and T1 states from MLCT to MC. , 2012, Dalton transactions.

[269]  K. Burgess,et al.  Base dependence in copper-catalyzed Huisgen reactions: efficient formation of bistriazoles. , 2007, Angewandte Chemie.

[270]  W. Adam,et al.  Sigma-polarization in 5-membered heterocyclic ring systems , 1967 .

[271]  Thomas S. Teets,et al.  Cyclometalated iridium(III) complexes with deoxyribose substituents. , 2013, Chemistry.

[272]  P. Hiberty,et al.  A clear correlation between the diradical character of 1,3-dipoles and their reactivity toward ethylene or acetylene. , 2010, Journal of the American Chemical Society.

[273]  M. Finn,et al.  Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction. , 2005, Angewandte Chemie.

[274]  S. Tsuzuki,et al.  Theoretical analysis of the hydrogen bond of imidazolium C(2)-H with anions. , 2007, Physical chemistry chemical physics : PCCP.

[275]  T. Steiner The hydrogen bond in the solid state. , 2002, Angewandte Chemie.

[276]  J. Crowley,et al.  Gold(I) "click" 1,2,3-triazolylidenes: synthesis, self-assembly and catalysis. , 2011, Chemical communications.

[277]  U. Schubert,et al.  Metal-free 1,5-regioselective azide-alkyne [3+2]-cycloaddition. , 2011, Chemistry, an Asian journal.

[278]  John R. Allen,et al.  Integrated and passive 1,2,3-triazolyl groups in fluorescent indicators for zinc(II) ions: thermodynamic and kinetic evaluations. , 2013, Inorganic chemistry.

[279]  J. L. Templeton,et al.  Transition metal η2-vinyl complexes , 2000 .

[280]  R. Sustmann A simple model for substituent effects in cycloaddition reactions. I. 1,3-dipolar cycloadditions , 1971 .

[281]  G. Cavallo,et al.  Halogen bonding: a general route in anion recognition and coordination. , 2010, Chemical Society reviews.

[282]  Kiyoshi Sato,et al.  A new tripodal anion receptor with CH···X− hydrogen bonding , 1999 .

[283]  M. Dewar A critique of frontier orbital theory , 1989 .

[284]  Juan-Ding Xiao,et al.  Solvent induced diverse dimensional coordination assemblies of cupric benzotriazole-5-carboxylate: syntheses, crystal structures, and magnetic properties. , 2011, Inorganic chemistry.

[285]  W. King,et al.  1,3-Dipolar Cycloaddition for the Generation of Nanostructured Semiconductors by Heated Probe Tips , 2006 .

[286]  R. Huisgen Kinetics and Mechanism of 1,3‐Dipolar Cycloadditions , 1963 .

[287]  James T. Fletcher,et al.  Multidentate 1,2,3-Triazole-Containing Chelators from Tandem Deprotection , 2008 .

[288]  Takakazu Yamamoto,et al.  Copolymers of pyrrole with N-alkynylpyrroles , 2012 .

[289]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[290]  S. Hecht,et al.  Responsive Backbones Based on Alternating Triazole-Pyridine/Benzene Copolymers: From Helically Folding Polymers to Metallosupramolecularly Crosslinked Gels , 2008 .

[291]  R. Grubbs,et al.  Protonolysis of a ruthenium-carbene bond and applications in olefin metathesis. , 2011, Journal of the American Chemical Society.

[292]  P. Ballester,et al.  Fluorescent supramolecular polymers: Metal directed self-assembly of perylene bisimide building blocks , 2005 .

[293]  E. Corey,et al.  Methylsulfinyl Carbanion (CH3-SO-CH2-). Formation and Applications to Organic Synthesis , 1965 .

[294]  B. Sarkar,et al.  The redox series [Ru(bpy)2(L)]n, n = +3, +2, +1, 0, with L = bipyridine, "click" derived pyridyl-triazole or bis-triazole: a combined structural, electrochemical, spectroelectrochemical and DFT investigation. , 2014, Dalton transactions.

[295]  Abigail G Doyle,et al.  Small-molecule H-bond donors in asymmetric catalysis. , 2007, Chemical reviews.

[296]  U. Schubert,et al.  Designing cyclometalated ruthenium(II) complexes for anodic electropolymerization. , 2014, Chemistry.

[297]  C. R. Watts,et al.  Origin of reactivity, regioselectivity, and periselectivity in 1,3-dipolar cycloadditions , 1973 .

[298]  Pavel Hobza,et al.  Investigations into the Nature of Halogen Bonding Including Symmetry Adapted Perturbation Theory Analyses. , 2008, Journal of chemical theory and computation.

[299]  V. Haridas,et al.  Triazole: a new motif for anion recognition , 2012 .

[300]  M. Albrecht,et al.  Application of 1,2,3-triazolylidenes as versatile NHC-type ligands: synthesis, properties, and application in catalysis and beyond. , 2013, Chemical communications.

[301]  U. Schubert,et al.  Ruthenium(II) metallo-supramolecular polymers of click-derived tridentate ditopic ligands. , 2012, Macromolecular rapid communications.

[302]  Robert G. Parr,et al.  Density functional approach to the frontier-electron theory of chemical reactivity , 1984 .

[303]  G. Klopman,et al.  Chemical reactivity and the concept of charge- and frontier-controlled reactions , 1968 .

[304]  S. Hecht,et al.  Designing structural motifs for clickamers: exploiting the 1,2,3-triazole moiety to generate conformationally restricted molecular architectures. , 2011, Chemistry.

[305]  B. Hay De novo structure-based design of anion receptors. , 2010, Chemical Society reviews.

[306]  Timothy Clark,et al.  Halogen bonding: the σ-hole , 2007 .

[307]  Xinyan Wang,et al.  Tandem reaction of 1-copper(I) alkynes for the synthesis of 1,4,5-trisubstituted 5-chloro-1,2,3-triazoles. , 2013, The Journal of organic chemistry.

[308]  F. Bickelhaupt,et al.  Bonding capabilities of imidazol-2-ylidene ligands in group-10 transition-metal chemistry , 2009 .

[309]  H. V. Rasika Dias,et al.  An Air Stable Carbene and Mixed Carbene “Dimers” , 1997 .

[310]  A. Katritzky,et al.  Aromaticity: a Theoretical Concept of Immense Practical Importance , 2000 .

[311]  L. Cavallo,et al.  (NHC)Copper(I)-catalyzed [3+2] cycloaddition of azides and mono- or disubstituted alkynes. , 2006, Chemistry.

[312]  G. Frenking,et al.  The nature of the bonding in transition-metal compounds. , 2000, Chemical reviews.

[313]  P. Beer,et al.  Triazole- and triazolium-containing porphyrin-cages for optical anion sensing. , 2012, Dalton transactions.

[314]  M. Albrecht,et al.  Abnormal binding in a carbene complex formed from an imidazolium salt and a metal hydride complex. , 2001, Chemical communications.

[315]  Zhan-Ting Li,et al.  Assessment of the intramolecular C–H⋯X (X=F, Cl, Br) hydrogen bonding of 1,4-diphenyl-1,2,3-triazoles , 2012 .

[316]  S. Huber,et al.  Isothermal calorimetric titrations on charge-assisted halogen bonds: role of entropy, counterions, solvent, and temperature. , 2012, Journal of the American Chemical Society.

[317]  Shaofa Sun,et al.  Organocatalytic 1,3-dipolar cycloaddition reactions of ketones and azides with water as a solvent , 2013 .

[318]  P Shing Ho,et al.  Halogen bonds as orthogonal molecular interactions to hydrogen bonds. , 2009, Nature chemistry.

[319]  E. McInnes,et al.  1,2,3-triazolate-bridged tetradecametallic transition metal clusters [M14(L)6O6(OMe)18X6] (M=FeIII, CrIII and VIII/IV) and related compounds: ground-state spins ranging from S=0 to S=25 and spin-enhanced magnetocaloric effect. , 2007, Inorganic chemistry.

[320]  M. Albrecht,et al.  Photolytic water oxidation catalyzed by a molecular carbene iridium complex. , 2012, Dalton transactions.

[321]  T. M. Krygowski,et al.  Structural aspects of aromaticity. , 2001, Chemical reviews.

[322]  A. Flood,et al.  Click chemistry generates privileged CH hydrogen-bonding triazoles: the latest addition to anion supramolecular chemistry. , 2010, Chemical Society reviews.

[323]  Manabu Uchida,et al.  Silole Derivatives as Efficient Electron Transporting Materials , 1996 .

[324]  A. Petitjean,et al.  Click-triazole: coordination of 2-(1,2,3-triazol-4-yl)-pyridine to cations of traditional tetrahedral geometry (Cu(I), Ag(I)). , 2010, Chemical communications.

[325]  W. Kirmse,et al.  Umsetzung von Phenylacetylen mit Aziden und Diazoverbindungen , 1958 .

[326]  P. Beer,et al.  Interlocked host molecules for anion recognition and sensing , 2013 .

[327]  A. Spek,et al.  A novel isomerization on interaction of antitumor-active azole-bridged dinuclear platinum(II) complexes with 9-ethylguanine. Platinum(II) atom migration from N2 to N3 on 1,2,3-triazole. , 2002, Journal of the American Chemical Society.

[328]  D. Hlasta,et al.  Trimethylsilyl-directed 1,3-dipolar cycloaddition reactions in the solid-phase synthesis of 1,2,3-triazoles. , 2005, Organic letters.

[329]  Anjul Kumar,et al.  Anion recognition by 1,2,3-triazolium receptors: application of click chemistry in anion recognition. , 2008, Organic letters.

[330]  W. Dehaen,et al.  Preorganization in bistriazolyl anion receptors , 2013 .

[331]  Meilin Liu,et al.  Intra- and intermolecular proton transfer in 1H(2H)-1,2,3-triazole based systems. , 2006, The journal of physical chemistry. A.

[332]  Vincenzo Balzani,et al.  Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence , 1988 .

[333]  B. Dietzek,et al.  Ruthenium(II) photosensitizers of tridentate click-derived cyclometalating ligands: a joint experimental and computational study. , 2012, Chemistry.

[334]  Mark N. Kobrak,et al.  Electrostatic interactions in ionic liquids: the dangers of dipole and dielectric descriptions. , 2010, Physical chemistry chemical physics : PCCP.

[335]  M. Querol,et al.  Thermodynamics of sulfate anion binding by macrocyclic polyammonium receptors , 2001 .

[336]  T. Swager,et al.  "Click" synthesis of heteroleptic tris-cyclometalated iridium(III) complexes: Cu(I) triazolide intermediates as transmetalating reagents. , 2011, Inorganic chemistry.

[337]  V. S. Bryantsev,et al.  Influence of substituents on the strength of aryl C-H...anion hydrogen bonds. , 2005, Organic letters.

[338]  Spencer J. Williams,et al.  'Click' cycloaddition catalysts: copper(I) and copper(II) tris(triazolylmethyl)amine complexes. , 2008, Chemical communications.

[339]  P. Geerlings,et al.  Trans effect and trans influence: importance of metal mediated ligand-ligand repulsion. , 2013, Physical chemistry chemical physics : PCCP.

[340]  P. Beer,et al.  Halogen- and hydrogen-bonding triazole-functionalised porphyrin-based receptors for anion recognition. , 2013, Dalton transactions.

[341]  E. Meggers,et al.  Strain-promoted azide-alkyne cycloaddition with ruthenium(II)-azido complexes. , 2013, Chemistry.

[342]  Gernot Frenking,et al.  Chemical bonding in transition metal carbene complexes , 2005 .

[343]  K. Rangappa,et al.  Crystal and electronic structure of stable nitrenium ions. A comparison with structurally related carbenes , 1996 .

[344]  K. Houk,et al.  Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: a computational study. , 2009, Journal of the American Chemical Society.

[345]  F. Qing,et al.  Ruthenium-catalyzed 1,3-dipolar cycloaddition of trifluoromethylated propargylic alcohols with azides , 2008 .

[346]  P. Beer,et al.  Anion-induced shuttling of a naphthalimide triazolium rotaxane. , 2012, Chemistry.

[347]  Q. Guo,et al.  What are the pKa values of C–H bonds in aromatic heterocyclic compounds in DMSO? , 2007 .

[348]  K. Sharpless,et al.  Direct synthesis of 1,5-disubstituted-4-magnesio-1,2,3-triazoles, revisited. , 2004, Organic letters.

[349]  A. Clearfield,et al.  The First Determination of the Energy Difference Between Solid-State Conformers by X-Ray Diffraction: 1. The Crystal Structure of the Pseudo-Jahn-Teller Complex (Nitrito)bis(2,2′-bipyridyl)copper(II) Nitrate at 20, 100, 165, and 296 K , 1987 .

[350]  S. Sankararaman,et al.  Palladium complexes with abnormal N-heterocyclic carbene ligands derived from 1,2,3-triazolium ions and their application in Suzuki coupling , 2009 .

[351]  M. Chudziński,et al.  Anion receptors composed of hydrogen- and halogen-bond donor groups: modulating selectivity with combinations of distinct noncovalent interactions. , 2011, Journal of the American Chemical Society.

[352]  Meilin Liu,et al.  Promotion of proton conduction in polymer electrolyte membranes by 1H-1,2,3-triazole. , 2005, Journal of the American Chemical Society.

[353]  R. Huisgen Cycloadditions — Definition, Classification, and Characterization , 1968 .

[354]  Lijuan Jiao,et al.  "Click" tetradentate ligands. , 2010, Dalton transactions.

[355]  R. Vianello,et al.  Acidities of azoles in the gas phase and in DMSO: an ab initio and DFT study , 2005 .

[356]  Yaojun Gao,et al.  Amine-catalyzed [3+2] Huisgen cycloaddition strategy for the efficient assembly of highly substituted 1,2,3-triazoles. , 2012, Chemistry.

[357]  U. Schubert,et al.  π‐Conjugated 2,2′:6′,2″‐Bis(terpyridines): Systematical Tuning of the Optical Properties by Variation of the Linkage between the Terpyridines and the π‐Conjugated System , 2010 .

[358]  R. Findlay,et al.  The molecular energy levels of the azoles: A study by photoelectron spectroscopy and ab initio molecular orbital calculations , 1973 .

[359]  Barbara Kirchner,et al.  Characterising the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair. , 2006, Chemistry.

[360]  James E. Huheey,et al.  Inorganic chemistry; principles of structure and reactivity , 1972 .

[361]  Pierangelo Metrangolo,et al.  Halogen bonding based recognition processes: a world parallel to hydrogen bonding. , 2005, Accounts of chemical research.

[362]  Raluca M. Fratila,et al.  Introducing axial chirality into mesoionic 4,4'-bis(1,2,3-triazole) dicarbenes. , 2012, Organic letters.

[363]  R. F. Hudson The Perturbation Treatment of Chemical Reactivity , 1973 .

[364]  F. Bordwell,et al.  Effects of structural changes on acidities and homolytic bond dissociation energies of the hydrogen-nitrogen bonds in amidines, carboxamides, and thiocarboxamides , 1991 .

[365]  G. Himbert,et al.  Untersuchungen an Diazoverbindungen und Aziden, XIX. Über das 5‐Amino‐1,2,3‐triazol ⇌ 2‐Diazoalkanamidin‐Gleichgewicht , 1973 .

[366]  Y. Butsugan,et al.  Synthesis and Chemical Transformations of 1,3‐Diaryltetrazolium Salts. Preparation of Mercury(II) and Palladium(II) Complexes of 1,3‐Diaryltetrazolylene and Reactions of 5‐Substituted 1,3‐Diphenyltetrazolium Salts with Nucleophiles , 1993 .

[367]  P. Beer,et al.  Observation of strong halogen bonds in the solid state structures of bis-haloimidazolium macrocycles , 2014 .

[368]  J. Yao,et al.  Tridentate Cyclometalated Ruthenium(II) Complexes of “Click” Ligand 1,3-Di(1,2,3-triazol-4-yl)benzene , 2011 .

[369]  Chen‐Han Chien,et al.  Postfunctionalization of Luminescent Bipyridine PtII Bisacetylides by Click Chemistry , 2012 .

[370]  J. Qin,et al.  Synthesis of Click‐Chelator via Cu(I)‐Catalyzed Alkyne‐Azide Cycloaddition , 2010 .

[371]  F. Neese,et al.  Electronic structures of octahedral Ni(II) complexes with "click" derived triazole ligands: a combined structural, magnetometric, spectroscopic, and theoretical study. , 2013, Inorganic chemistry.

[372]  Christopher S. Murphy,et al.  2-Anthryltriazolyl-containing multidentate ligands: zinc-coordination mediated photophysical processes and potential in live-cell imaging applications. , 2010, Inorganic chemistry.

[373]  Eli Zysman-Colman,et al.  Enhanced luminescent iridium(III) complexes bearing aryltriazole cyclometallated ligands. , 2011, Inorganic chemistry.

[374]  Oldamur Hollóczki,et al.  Carbenes in ionic liquids , 2010 .

[375]  G. Wittig,et al.  Zur Existenz niedergliedriger Cycloalkine, I , 1961 .

[376]  Janssen,et al.  1,2,3-Triazolyl-pyridine derivatives as chelating ligands for blue iridium(III) complexes. Photophysics and electroluminescent devices , 2008 .

[377]  U. Schubert,et al.  2,2':6',2''-Terpyridine meets 2,6-bis(1H-1,2,3-triazol-4-yl)pyridine: tuning the electro-optical properties of ruthenium(II) complexes. , 2009, Dalton transactions.

[378]  Raghunath O. Ramabhadran,et al.  Polarized naphthalimide CH donors enhance Cl- binding within an aryl-triazole receptor. , 2011, Organic letters.

[379]  Javier J. Concepcion,et al.  The role of proton coupled electron transfer in water oxidation , 2012 .

[380]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[381]  Rheingold,et al.  4,5-Bis(diphenylphosphinoyl)-1,2,3-triazole: A Powerful New Ligand That Uses Two Different Modes of Chelation. , 2000, Angewandte Chemie.

[382]  M. Albrecht,et al.  Water oxidation catalyzed by strong carbene-type donor-ligand complexes of iridium. , 2010, Angewandte Chemie.

[383]  G. Frenking,et al.  Nature of the Metal−Ligand Bond in M(CO)5PX3 Complexes (M = Cr, Mo, W; X = H, Me, F, Cl): Synthesis, Molecular Structure, and Quantum-Chemical Calculations , 2002 .

[384]  John C Huffman,et al.  Can terdentate 2,6-bis(1,2,3-triazol-4-yl)pyridines form stable coordination compounds? , 2007, Chemical communications.

[385]  G. Sørensen,et al.  The Molecular Structure and Tautomer Equilibrium of Gaseous 1,2,3-Triazole Studied by Microwave Spectroscopy, Electron Diffraction and Ab Initio Calculations , 1988 .

[386]  B. Hay,et al.  Anion-arene adducts: C-H hydrogen bonding, anion-pi interaction, and carbon bonding motifs. , 2008, Chemical communications.

[387]  C. Su,et al.  Copper(I) Complexes of Normal and Abnormal Carbenes and Their Use as Catalysts for the Huisgen [3+2] Cycloaddition between Azides and Alkynes , 2011 .

[388]  Rong Cai,et al.  Porous double-walled metal triazolate framework based upon a bifunctional ligand and a pentanuclear zinc cluster exhibiting selective CO2 uptake. , 2012, Inorganic chemistry.

[389]  L. Bogani,et al.  Cobalt complexes with "Click"-derived functional tripodal ligands: spin crossover and coordination ambivalence. , 2011, Inorganic chemistry.

[390]  R. Sessions,et al.  Anion receptor molecules. Synthesis and anion-binding properties of polyammonium macrocycles , 1981 .

[391]  Lionel Salem,et al.  Intermolecular orbital theory of the interaction between conjugated systems. II. Thermal and photochemical cycloadditions , 1968 .

[392]  A. Flood,et al.  Intramolecular hydrogen bonds preorganize an aryl-triazole receptor into a crescent for chloride binding. , 2010, Organic letters.

[393]  Juyoung Yoon,et al.  Imidazolium receptors for the recognition of anions. , 2006, Chemical Society reviews.

[394]  C. Crudden,et al.  Stability and reactivity of N-heterocyclic carbene complexes , 2004 .

[395]  F. G. Bordwell,et al.  Equilibrium Acidities in Dimethyl Sulfoxide Solution , 1988 .

[396]  Olena V. Zenkina,et al.  Synthesis and Structure of Silver and Rhodium 1,2,3-Triazol-5-ylidene Mesoionic Carbene Complexes , 2012 .

[397]  Paulo J. Costa,et al.  Investigating the imidazolium–anion interaction through the anion-templated construction of interpenetrated and interlocked assemblies. , 2011, Chemistry.

[398]  P. Schleyer,et al.  Dissected Nucleus-Independent Chemical Shift Analysis of π-Aromaticity and Antiaromaticity. , 2001, Organic letters.

[399]  Ulf M Lindström,et al.  Stereoselective organic reactions in water. , 2002, Chemical reviews.

[400]  Guochen Jia,et al.  Ruthenium-catalyzed azide-alkyne cycloaddition: scope and mechanism. , 2008, Journal of the American Chemical Society.

[401]  O. Reinaud,et al.  Tris(triazolyl) calix[6]arene-based zinc and copper funnel complexes: imidazole-like or pyridine-like? A comparative study. , 2011, Inorganic chemistry.

[402]  Peter Politzer,et al.  An overview of halogen bonding , 2007, Journal of molecular modeling.

[403]  J. Sessler,et al.  A pyrrole-based triazolium-phane with NH and cationic CH donor groups as a receptor for tetrahedral oxyanions that functions in polar media , 2013 .

[404]  W. Herrmann,et al.  N-Heterocyclic Carbenes†‡ , 1997 .

[405]  M. Albrecht,et al.  Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. , 2010, Chemical Society reviews.

[406]  O. Borg,et al.  Computational study of the lowest triplet state of ruthenium polypyridyl complexes used in artificial photosynthesis. , 2008, The journal of physical chemistry. A.

[407]  K. Abboud,et al.  Inorganic click (iClick) synthesis of heterotrinuclear Pt(II)/Au(I)2 complexes. , 2013, Dalton transactions.

[408]  Kuo‐Wei Huang,et al.  Electronic effects of ruthenium-catalyzed [3+2]-cycloaddition of alkynes and azides , 2010 .

[409]  A. Punnoose,et al.  Formation of an unusual copper(II) complex from the degradation of a novel tricopper(II) carbohydrazone complex , 2009 .

[410]  C. A. Tolman,et al.  Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis , 1977 .

[411]  Amitabha Bhattacharyya,et al.  Coinage metal-N-heterocyclic carbene complexes. , 2009, Chemical reviews.

[412]  V. C. Gibson Ligands as “Compass Needles”: How Orientations of Alkene, Alkyne, and Alkylidene Ligands Reveal π‐Bonding Features in Tetrahedral Transition Metal Complexes , 1994 .

[413]  D. M. Grove,et al.  Comparative Rates of Ligand Substitution Reactions of Pt-C-Bonded Complexes in Aqueous Solution and the X-ray Crystal Structure of (Pt{C6H3(CH2NMe2)2-2,6}(OH2))(OSO2CF3) , 1996 .

[414]  C. A. Ramsden,et al.  Non-bonding molecular orbitals and the chemistry of non-classical organic molecules , 1994 .

[415]  S. Huber,et al.  5-Iodo-1,2,3-triazolium-based multidentate halogen-bond donors as activating reagents. , 2012, Chemical communications.

[416]  W. C. Herndon Theory of cycloaddition reactions , 1972 .

[417]  Sukbok Chang,et al.  Highly efficient one-pot synthesis of N-sulfonylamidines by Cu-catalyzed three-component coupling of sulfonyl azide, alkyne, and amine. , 2005, Journal of the American Chemical Society.

[418]  M. Albrecht,et al.  Abnormal N-heterocyclic Carbenes: More than Just Exceptionally Strong Donor Ligands , 2011 .

[419]  C. Bertozzi,et al.  Fluorogenic azidofluoresceins for biological imaging. , 2012, Journal of the American Chemical Society.

[420]  P. Vicendo,et al.  Is the 3MLCT the only photoreactive state of polypyridyl complexes? , 2007, Inorganic chemistry.

[421]  Zhan-Ting Li,et al.  Intramolecular Six-Membered and Three-Center C-H···O Hydrogen Bonding in 1,4-Diphenyl-1,2,3-Triazoles , 2009 .

[422]  G. Frenking,et al.  Towards a rigorously defined quantum chemical analysis of the chemical bond in donor–acceptor complexes☆ , 2003 .

[423]  R J Williams,et al.  Metalloenzymes: the entatic nature of their active sites. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[424]  L. Bachas,et al.  Triazolophanes: a new class of halide-selective ionophores for potentiometric sensors. , 2010, Analytical chemistry.

[425]  R. G. Wilkins,et al.  The Kinetics of Replacement Reactions of Complexes of the Transition Metals with 2,2',2"-Terpyridine , 1966 .

[426]  O. Ivashkevich,et al.  CH acidity of five-membered nitrogen-containing heterocycles: DFT investigation , 2009 .

[427]  T. Funabiki,et al.  Syntheses, structural characterization and photophysical properties of 4-(2-pyridyl)-1,2,3-triazole rhenium(I) complexes. , 2008, Dalton transactions.

[428]  G. Bertrand,et al.  A Brief Survey of our Contribution to Stable Carbene Chemistry. , 2011, Organometallics.

[429]  V. Fokin,et al.  Ruthenium-catalyzed cycloaddition of aryl azides and alkynes. , 2007, Organic letters.

[430]  M. Rodgers,et al.  Sigma versus Pi Interactions in Alkali Metal Ion Binding to Azoles: Threshold Collision-Induced Dissociation and ab Initio Theory Studies , 2002 .

[431]  Regioselectivity of aryl azide cycloaddition to methyl propiolate in aqueous media: experimental evidence versus local DFT HSAB principle , 2006 .

[432]  Lei Zhu,et al.  Tridentate complexes of 2,6-bis(4-substituted-1,2,3-triazol-1-ylmethyl)pyridine and its organic azide precursors: an application of the copper(II) acetate-accelerated azide-alkyne cycloaddition. , 2011, Dalton transactions.

[433]  J. Elguero,et al.  A theoretical NMR study of ortho and para‐substituted benzenes compared with silabenzenes, pyridines and phosphabenzenes , 2010, Magnetic resonance in chemistry : MRC.

[434]  T. Ooi,et al.  Catalytic asymmetric Mannich-type reactions of α-cyano α-sulfonyl carbanions. , 2012, Chemical communications.

[435]  M. Albrecht,et al.  Beyond conventional N-heterocyclic carbenes: abnormal, remote, and other classes of NHC ligands with reduced heteroatom stabilization. , 2009, Chemical reviews.

[436]  J. Cintrat,et al.  1-Protected 5-amido 1,2,3-triazoles via ruthenium-catalyzed [3+2] cycloaddition of azides and ynamides , 2007 .

[437]  K. Fukui,et al.  Role of frontier orbitals in chemical reactions. , 1982, Science.

[438]  L. Ehrenberg,et al.  Reactions between Azolium Salts and Nucleophilic Reagents. II. Bromo-1,2,3-triazolium Salts and Sodium Hydroxide. , 1971 .

[439]  Craig J. Hawker,et al.  Click chemistry for photonic applications: triazole-functionalized platinum(II) acetylides for optical power limiting , 2008 .

[440]  M. Finn,et al.  Benzimidazole and related ligands for Cu-catalyzed azide-alkyne cycloaddition. , 2007, Journal of the American Chemical Society.

[441]  H. Schwarz,et al.  “Rollover” cyclometalation – early history, recent developments, mechanistic insights and application aspects , 2012 .

[442]  G. Sextl,et al.  Homoleptic lanthanide 1,2,3-triazolates (∞)(2–3)[Ln(Tz*)3] and their diversified photoluminescence properties. , 2012, Inorganic chemistry.

[443]  G. Desiraju A bond by any other name. , 2011, Angewandte Chemie.

[444]  M. Finn,et al.  Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. , 2010, Journal of the American Chemical Society.

[445]  L. Delle Site,et al.  Ionic charge reduction and atomic partial charges from first-principles calculations of 1,3-dimethylimidazolium chloride. , 2010, The journal of physical chemistry. B.

[446]  L. Delle Site,et al.  Ionic liquids studied across different scales: a computational perspective. , 2012, Faraday discussions.

[447]  M. Albrecht,et al.  Rhodium carbene complexes as versatile catalyst precursors for Si-H bond activation. , 2012, Chemistry.

[448]  F. Schmidtchen Hosting anions. The energetic perspective. , 2010, Chemical Society reviews.

[449]  U. Schubert,et al.  Phenyl-1H-[1,2,3]triazoles as New Cyclometalating Ligands for Iridium(III) Complexes , 2009 .

[450]  M. Albrecht,et al.  Wingtip substituents tailor the catalytic activity of ruthenium triazolylidene complexes in base-free alcohol oxidation. , 2013, Dalton transactions.

[451]  Khuong Q. Vuong,et al.  New Rhodium(I) and Iridium(I) Complexes Containing Mixed Pyrazolyl–1,2,3-Triazolyl Ligands As Catalysts for Hydroamination , 2012 .

[452]  Gene-Hsiang Lee,et al.  Synthesis of Ruthenium Triazolato and Tetrazolato Complexes by 1,3-Dipolar Cycloadditions of Ruthenium Azido Complex with Alkynes and Alkenes and Regiospecific Alkylation of Triazolates , 2003 .

[453]  Anthony J. Arduengo,et al.  Looking for Stable Carbenes: The Difficulty in Starting Anew , 1999 .

[454]  Bosung Kim,et al.  Highly selective fluorescence turn-on sensor for fluoride detection. , 2013, ACS applied materials & interfaces.

[455]  R. Schibli,et al.  Metal chelating systems synthesized using the copper(I) catalyzed azide-alkyne cycloaddition. , 2010, Dalton transactions.

[456]  C. Versek,et al.  Physicochemical properties of 1,2,3-triazolium ionic liquids , 2012 .

[457]  T. Ooi,et al.  Catalytic asymmetric ring openings of meso and terminal aziridines with halides mediated by chiral 1,2,3-triazolium silicates. , 2012, Journal of the American Chemical Society.

[458]  L. Birkofer,et al.  Substitutions‐ und Additionsreaktionen an silylierten Acetylenen , 1963 .

[459]  S. Kubik,et al.  Recognition of Anions by Synthetic Receptors in Aqueous Solution , 2005 .

[460]  Yuhan Zhou,et al.  Direct synthesis of 1,4-disubstituted-5-alumino-1,2,3-triazoles: copper-catalyzed cycloaddition of organic azides and mixed aluminum acetylides. , 2010, Angewandte Chemie.

[461]  Richard L. Harlow,et al.  A stable crystalline carbene , 1991 .

[462]  Lihe Zhang,et al.  A convenient preparation of 5-iodo-1,4-disubstituted-1,2,3-triazole: multicomponent one-pot reaction of azide and alkyne mediated by CuI-NBS. , 2008, The Journal of organic chemistry.

[463]  H. Lumbroso A dipole moment study of weakly acidic compounds , 1991 .

[464]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[465]  F. Diederich,et al.  1,2,3-triazoles as conjugative pi-linkers in push-pull chromophores: importance of substituent positioning on intramolecular charge-transfer. , 2008, Organic letters.

[466]  Corwin Hansch,et al.  A survey of Hammett substituent constants and resonance and field parameters , 1991 .

[467]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[468]  M. Botoshansky,et al.  Versatile, Selective, and Switchable Coordination Modes of Pincer Click Ligands , 2009 .

[469]  R. Huisgen 1,3-Dipolar cycloadditions. 76. Concerted nature of 1,3-dipolar cycloadditions and the question of diradical intermediates , 1976 .

[470]  Christian Spiteri,et al.  Copper-catalyzed azide-alkyne cycloaddition: regioselective synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. , 2010, Angewandte Chemie.

[471]  C. Vallée,et al.  Reaction Intermediates in the Synthesis of New Hydrido, N-Heterocyclic Dicarbene Iridium(III) Pincer Complexes , 2009 .

[472]  M. Grzywa,et al.  CuN6 Jahn-Teller centers in coordination frameworks comprising fully condensed Kuratowski-type secondary building units: phase transitions and magneto-structural correlations. , 2012, Dalton transactions.

[473]  C. Fahrni,et al.  A Fluorogenic Probe for the Copper(I)-Catalyzed Azide−Alkyne Ligation Reaction: Modulation of the Fluorescence Emission via 3(n,π*)−1(π,π*) Inversion , 2004 .

[474]  K N Houk,et al.  Distortion/interaction energy control of 1,3-dipolar cycloaddition reactivity. , 2007, Journal of the American Chemical Society.

[475]  I. Marek Synthesis and Reactivity of sp(2) Geminated Organobismetallic Derivatives. , 2000, Chemical reviews.

[476]  L. Savegnago,et al.  Organocatalytic Synthesis of (Arylselanyl)phenyl‐1H‐1,2,3‐triazole‐4‐carboxamides by Cycloaddition between Azidophenyl Arylselenides and β‐Oxo‐amides , 2014 .

[477]  M. Albrecht,et al.  Tunable single-site ruthenium catalysts for efficient water oxidation. , 2011, Chemical communications.

[478]  M. Botoshansky,et al.  Synthesis of Novel Bulky, Electron-Rich Propargyl and Azidomethyl Dialkyl Phosphines and Their Use in the Preparation of Pincer Click Ligands , 2009 .

[479]  V. Fokin,et al.  Rhodium-catalyzed transannulation of 1,2,3-triazoles with nitriles. , 2008, Journal of the American Chemical Society.

[480]  Morten Meldal,et al.  Cu-catalyzed azide-alkyne cycloaddition. , 2008, Chemical reviews.

[481]  A. Rheingold,et al.  Gold(I) triazolyls: organometallic synthesis in air and aqueous media. , 2013, Chemical communications.

[482]  Ming Yu,et al.  Aquabis(2,2′-bipyridine-κ2N,N′)copper(II) bis­(tetra­fluorido­borate) , 2007 .

[483]  L. Cavallo,et al.  Understanding the M(NHC) (NHC = N-heterocyclic carbene) bond , 2009 .

[484]  Cramer,et al.  Singlet-triplet energy gaps in highly stabilized nitrenium ions: experimental and theoretical study of 1,3-dimethylbenzotriazolium Ion , 2000, Organic letters.

[485]  S. Hecht,et al.  Modulating large-area self-assembly at the solid-liquid interface by pH-mediated conformational switching. , 2009, Chemistry.

[486]  Anne-Sophie Cornec,et al.  One “Click” to Access Push–Triazole–Pull Fluorophores Incorporating a Pyrimidine Moiety: Structure–Photophysical Properties Relationships , 2013 .

[487]  A. Michael Ueber die Einwirkung von Diazobenzolimid auf Acetylendicarbonsäuremethylester , 1893 .

[488]  C. J. McAdam,et al.  Palladium(II) complexes of readily functionalized bidentate 2-pyridyl-1,2,3-triazole "click" ligands: a synthetic, structural, spectroscopic, and computational study. , 2011, Inorganic chemistry.

[489]  D. Font,et al.  Assessing the suitability of 1,2,3-triazole linkers for covalent immobilization of chiral ligands: application to enantioselective phenylation of aldehydes. , 2007, The Journal of organic chemistry.

[490]  U. Schubert,et al.  Metal-containing and metallosupramolecular polymers and materials , 2006 .

[491]  R. W. Strozier,et al.  Frontier molecular orbitals of 1,3 dipoles and dipolarophiles , 1973 .

[492]  J. Fernández-Hernández,et al.  Control of the mutual arrangement of cyclometalated ligands in cationic iridium(III) complexes. Synthesis, spectroscopy, and electroluminescence of the different isomers. , 2011, Journal of the American Chemical Society.

[493]  J. Košmrlj,et al.  A selective approach to pyridine appended 1,2,3-triazolium salts. , 2013, Organic letters.

[494]  M. Drees,et al.  N-Heterocyclic carbenes via abstraction of ammonia: 'normal' carbenes with 'abnormal' character. , 2012, Chemical communications.

[495]  R. Taft,et al.  Electrostatic proximity effects in the relative basicities and acidities of pyrazole, imidazole, pyridazine, and pyrimidine , 1986 .

[496]  M. Grätzel,et al.  "Click-chemistry" approach in the design of 1,2,3-triazolyl-pyridine ligands and their Ru(II)-complexes for dye-sensitized solar cells , 2011 .

[497]  M. Mettry,et al.  Metal-coordinated water-soluble cavitands act as C-H oxidation catalysts. , 2012, Organic letters.

[498]  A. Katritzky,et al.  To what extent can aromaticity be defined uniquely? , 2002, The Journal of organic chemistry.

[499]  F. Schmidtchen,et al.  Artificial Organic Host Molecules for Anions. , 1997, Chemical reviews.

[500]  L. Ackermann,et al.  Regioselective syntheses of fully-substituted 1,2,3-triazoles: the CuAAC/C-H bond functionalization nexus. , 2010, Organic & biomolecular chemistry.

[501]  U. Schubert,et al.  Bis(tridentate) ruthenium-terpyridine complexes featuring microsecond excited-state lifetimes. , 2012, Journal of the American Chemical Society.

[502]  Sławomir Janusz Grabowski,et al.  What is the covalency of hydrogen bonding? , 2011, Chemical reviews.

[503]  Raghunath O. Ramabhadran,et al.  Two levels of conformational pre-organization consolidate strong CH hydrogen bonds in chloride-triazolophane complexes. , 2011, Chemical communications.

[504]  P. Beer,et al.  Exploiting the 1,2,3-triazolium motif in anion-templated formation of a bromide-selective rotaxane host assembly. , 2009, Angewandte Chemie.

[505]  O. Roubeau,et al.  Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials , 2011 .

[506]  P. Gütlich,et al.  Spin crossover in metallomesogens , 2009 .

[507]  V. Fokin,et al.  Practical synthesis of amides from in situ generated copper(I) acetylides and sulfonyl azides. , 2006, Angewandte Chemie.

[508]  Y. Chi,et al.  Phenylcarbazole-dipyridyl triazole hybrid as bipolar host material for phosphorescent OLEDs , 2012 .

[509]  C. Berlinguette,et al.  Stabilization of ruthenium sensitizers to TiO2 surfaces through cooperative anchoring groups. , 2013, Journal of the American Chemical Society.

[510]  Mark S. Taylor,et al.  Halogen bonding between anions and iodoperfluoroorganics: solution-phase thermodynamics and multidentate-receptor design. , 2013, Chemistry.

[511]  U. Bunz,et al.  1,3-Dipolar cycloaddition of alkynes to azides. Construction of operationally functional metal responsive fluorophores. , 2008, Chemical communications.

[512]  D. Gusev Electronic and Steric Parameters of 76 N-Heterocyclic Carbenes in Ni(CO)3(NHC) , 2009 .

[513]  P. Beer,et al.  A ferrocene redox-active triazolium macrocycle that binds and senses chloride , 2012, Beilstein journal of organic chemistry.

[514]  M. Papadopoulos,et al.  Electronic and Vibrational Polarizabilities and Hyperpolarizabilities of Azoles: A Comparative Study of the Structure−Polarization Relationship , 2003 .

[515]  J. Lenhardt,et al.  1,2,3-Triazole CH...Cl(-) contacts guide anion binding and concomitant folding in 1,4-diaryl triazole oligomers. , 2008, Angewandte Chemie.

[516]  U. Bunz,et al.  Click to bind: metal sensors. , 2013, Chemistry, an Asian journal.

[517]  G. Koten,et al.  Group IB organometallic Chemistry XXIII. Reaction of Ar4Cu2Li2 with RhI complexes; Synthesis of 2-[(dimethylamino)methyl] phenylrhodium dicarbon monoxide and electron-transfer induced selective formation of diarylketones ArC(O)Ar , 1978 .

[518]  F. Bordwell,et al.  Homolytic bond dissociation energies for the cleavage of .alpha.-nitrogen-hydrogen bonds in carboxamides, sulfonamides, and their derivatives. The question of synergism in nitrogen-centered radicals , 1990 .

[519]  C. Su,et al.  Nickel complexes with "click"-derived pyridyl-triazole ligands: weak intermolecular interactions and catalytic ethylene oligomerisation. , 2012, Dalton transactions.

[520]  F. Schmidtchen Reflections on the construction of anion receptors: Is there a sign to resign from design? , 2006 .

[521]  J. Elguero,et al.  Analysis of the effects of N-substituents on some aspects of the aromaticity of imidazoles and pyrazoles. , 2011, The journal of physical chemistry. A.

[522]  M. Albrecht C4-bound imidazolylidenes: from curiosities to high-impact carbene ligands. , 2008, Chemical communications.

[523]  I. V. van Stokkum,et al.  Fast photo-processes in triazole-based push-pull systems. , 2010, Physical chemistry chemical physics : PCCP.

[524]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[525]  Philipp Gütlich,et al.  Thermal and Optical Switching of Iron(II) Complexes , 1994 .

[526]  Philip A. Gale,et al.  Calix[4]pyrrole as a chloride anion receptor: solvent and countercation effects. , 2006, Journal of the American Chemical Society.

[527]  A. Flood,et al.  Shape persistence delivers lock-and-key chloride binding in triazolophanes. , 2012, Chemical communications.

[528]  C. Schmuck,et al.  Ion-pair induced self-assembly in aqueous solvents. , 2010, Chemical Society reviews.

[529]  Viktor Gutmann,et al.  Solvent effects on the reactivities of organometallic compounds , 1976 .

[530]  G. Frison,et al.  Electronic structure trends in N-heterocyclic carbenes (NHCs) with varying number of nitrogen atoms and NHC-transition-metal bond properties. , 2013, Chemistry.

[531]  J. Crowley,et al.  1,3,4-Trisubtituted-1,2,3-Triazol-5-ylidene 'Click' Carbene Ligands: Synthesis, Catalysis and Self-Assembly , 2011 .

[532]  Polynuclear complexes of copper(I) halides: coordination chemistry and catalytic transformations of alkynes , 2000 .

[533]  E. Zysman‐Colman,et al.  Cationic iridium(III) complexes bearing a bis(triazole) ancillary ligand. , 2013, Dalton transactions.

[534]  G. Frenking,et al.  Copper-substituted ethanes as a model for copper-acetylene interactions on the metal surface Quantum mechanical study of the structure and bonding of copper-acetylene and copper-ethylene compounds Cun(C2H2) (n = 1, 2, 4), Cu(C2H2) +, Cun(C2H4 (n = 1, 2) and Cu(C2H4)+1,2☆ , 1996 .

[535]  R. Fröhlich,et al.  Iridium(III) emitters based on 1,4-disubstituted-1H-1,2,3-triazoles as cyclometalating ligand: synthesis, characterization, and electroluminescent devices. , 2013, Inorganic chemistry.

[536]  M. Albrecht,et al.  Synthesis and Tunability of Abnormal 1,2,3-Triazolylidene Palladium and Rhodium Complexes , 2011 .

[537]  P. Beer,et al.  Ion-pair recognition by a heteroditopic triazole-containing receptor. , 2012, Chemistry.

[538]  M. Winkler,et al.  1,3-Diaza-2-azoniaallene salts: cycloadditions to alkynes, carbodiimides and cyanamides , 1998 .

[539]  V. Fokin,et al.  Efficient synthesis of 2-substituted-1,2,3-triazoles. , 2008, Organic letters.

[540]  Eli Zysman-Colman,et al.  Bright electrochemiluminescence of iridium(III) complexes. , 2012, Chemical communications.

[541]  M. Begtrup Azolium anions and their reaction with electrophilic reagents , 1975 .

[542]  M. Zeller,et al.  Carbon−Gold Bond Formation through [3 + 2] Cycloaddition Reactions of Gold(I) Azides and Terminal Alkynes , 2007 .

[543]  J. Sessler,et al.  Structurally Characterized Cationic Silver(I) and Ruthenium(II)carbene complexes of 1,2,3-Triazol-5-ylidenes. , 2011, Organometallics.

[544]  R. Tykwinski,et al.  Acenes With a Click , 2012 .

[545]  J. Yang,et al.  13C NMR Spectroscopic Determination of Ligand Donor Strengths Using N-Heterocyclic Carbene Complexes of Palladium(II) , 2009 .

[546]  O. Reinaud,et al.  Calixarene-Based Copper(I) Complexes as Models for Monocopper Sites in Enzymes. , 1998, Angewandte Chemie.