Design of nanostructured solar cells using coupled optical and electrical modeling.

Nanostructured light trapping has emerged as a promising route toward improved efficiency in solar cells. We use coupled optical and electrical modeling to guide optimization of such nanostructures. We study thin-film n-i-p a-Si:H devices and demonstrate that nanostructures can be tailored to minimize absorption in the doped a-Si:H, improving carrier collection efficiency. This suggests a method for device optimization in which optical design not only maximizes absorption, but also ensures resulting carriers are efficiently collected.

[1]  A. Polman,et al.  Optical impedance matching using coupled plasmonic nanoparticle arrays. , 2011, Nano letters.

[2]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[3]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[4]  Jonathan Grandidier,et al.  Light Absorption Enhancement in Thin‐Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres , 2011, Advanced materials.

[5]  R. N. Hall,et al.  Silicon photovoltaic cells , 1981 .

[6]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[7]  Xiaofeng Li,et al.  Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells. , 2011, Optics express.

[8]  H. A. Atwater,et al.  Predicted efficiency of Si wire array solar cells , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[9]  Vikram L. Dalal,et al.  A photonic-plasmonic structure for enhancing light absorption in thin film solar cells , 2011 .

[10]  Albert Polman,et al.  Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells , 2010 .

[11]  Hiroshi Sakai,et al.  Effects of Surface Morphology of Transparent Electrode on the Open-Circuit Voltage in a-Si:H Solar Cells , 1990 .

[12]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[13]  H. Atwater,et al.  Modeling light trapping in nanostructured solar cells. , 2011, ACS Nano.

[14]  J. Nelson The physics of solar cells , 2003 .

[15]  M. Green Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes , 1984, IEEE Transactions on Electron Devices.

[16]  P. Spinelli,et al.  Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators , 2012, Nature Communications.

[17]  M. Scarpulla,et al.  Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles. , 2010, Optics express.

[18]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.

[19]  Zongfu Yu,et al.  Fundamental limit of nanophotonic light trapping in solar cells , 2010, Proceedings of the National Academy of Sciences.

[20]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[21]  R.M. Swanson,et al.  Point-contact silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[22]  G. Whitesides,et al.  Light Trapping in Ultrathin Plasmonic Solar Cells References and Links , 2022 .

[23]  R. Schropp,et al.  Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells , 2009 .

[24]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[25]  Harry A Atwater,et al.  Design Considerations for Plasmonic Photovoltaics , 2010, Advanced materials.

[26]  E. Schiff Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals , 2011 .

[27]  O. S. Heavens,et al.  Optical Properties of Thin Solid Films , 2011 .

[28]  C. Ballif,et al.  Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers , 2009 .

[29]  Albert Polman,et al.  Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film A-si:h Solar Cells , 2022 .

[30]  M. Zeman,et al.  Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology , 1998 .

[31]  Mukul Agrawal,et al.  Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. , 2010, Optics express.

[32]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[33]  James G. Mutitu,et al.  Thin film solar cell design based on photonic crystal and diffractive grating structures. , 2008, Optics express.

[34]  J. Springer,et al.  TCO and light trapping in silicon thin film solar cells , 2004 .

[35]  F. Lederer,et al.  Comparison and optimization of randomly textured surfaces in thin-film solar cells. , 2010, Optics express.

[36]  Yi Cui,et al.  Light trapping in solar cells: can periodic beat random? , 2012, ACS nano.

[37]  A. Shah,et al.  Thin‐film silicon solar cell technology , 2004 .

[38]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.