Effect of calmodulin on ginseng saponin-induced Ca2+-Activated CI-channel activation inXenopus laevis oocytes

[1]  A. Parekh Interaction between capacitative Ca2+ influx and Ca2+-dependent Cl− currents inXenopus oocytes , 1995, Pflügers Archiv.

[2]  Byung-Hwan Lee,et al.  Ginseng saponins induce store‐operated calcium entry in Xenopus oocytes , 2004, British journal of pharmacology.

[3]  Byung-Hwan Lee,et al.  Prevention of Ginsenoside-induced Desensitization of Ca2+-activated Cl– Current by Microinjection of Inositol Hexakisphosphate in Xenopus laevis Oocytes , 2004, Journal of Biological Chemistry.

[4]  L. Missiaen,et al.  The role of calmodulin for inositol 1,4,5-trisphosphate receptor function. , 2002, Biochimica et biophysica acta.

[5]  C. Taylor,et al.  IP3 receptors and their regulation by calmodulin and cytosolic Ca2+. , 2002, Cell calcium.

[6]  L. Missiaen,et al.  Localization and function of a calmodulin-apocalmodulin-binding domain in the N-terminal part of the type 1 inositol 1,4,5-trisphosphate receptor. , 2002, The Biochemical journal.

[7]  S. Nah,et al.  Gαq/11 Coupled to Mammalian Phospholipase C β3-like Enzyme Mediates the Ginsenoside Effect on Ca2+-activated Cl− Current in theXenopus Oocyte* , 2001, The Journal of Biological Chemistry.

[8]  S. Nah,et al.  A novel activation of Ca2+‐activated Cl− channel in Xenopus oocytes by Ginseng saponins: evidence for the involvement of phospholipase C and intracellular Ca2+ mobilization , 2001 .

[9]  S. Morris,et al.  Ca2+-calmodulin inhibits Ca2+ release mediated by type-1, -2 and -3 inositol trisphosphate receptors. , 2000, The Biochemical journal.

[10]  A. Weidema,et al.  The Bell-shaped Ca2+ Dependence of the Inositol 1,4,5-Trisphosphate-induced Ca2+ Release Is Modulated by Ca2+/Calmodulin* , 1999, The Journal of Biological Chemistry.

[11]  H. C. Hartzell,et al.  Dynamics of calcium regulation of chloride currents in Xenopus oocytes. , 1999, American journal of physiology. Cell physiology.

[12]  Peter Lipp,et al.  Calcium - a life and death signal , 1998, Nature.

[13]  C. Taylor,et al.  A novel role for calmodulin: Ca2+-independent inhibition of type-1 inositol trisphosphate receptors. , 1998, The Biochemical journal.

[14]  R. Penner,et al.  Store depletion and calcium influx. , 1997, Physiological reviews.

[15]  나승열 인삼연구의 최근 발전과 경향 ( Ginseng ; Recent Advances and Trends ) , 1997 .

[16]  T. Lorca,et al.  Involvement of the Ca2+/calmodulin-dependent protein kinase II pathway in the Ca2+-mediated regulation of the capacitative Ca2+ entry in Xenopus oocytes. , 1997, The Biochemical journal.

[17]  H. C. Hartzell,et al.  Activation of different Cl currents in Xenopus oocytes by Ca liberated from stores and by capacitative Ca influx , 1996, The Journal of general physiology.

[18]  K. Mikoshiba,et al.  The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. , 1995, The Biochemical journal.

[19]  K. Yau,et al.  Calcium-Calmodulin Modulation of the Olfactory Cyclic Nucleotide-Gated Cation Channel , 1994, Science.

[20]  M. Waxham,et al.  Ca2+/calmodulin-dependent protein kinase II is phosphorylated by protein kinase C in vitro. , 1993, Biochemistry.

[21]  M. Gnegy,et al.  Calmodulin in neurotransmitter and hormone action. , 1993, Annual review of pharmacology and toxicology.

[22]  S. W. Sernett,et al.  Isolation, characterization, and localization of the inositol 1,4,5-trisphosphate receptor protein in Xenopus laevis oocytes. , 1992, The Journal of biological chemistry.

[23]  David E. Clapham,et al.  Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes , 1992, Cell.

[24]  T. Soderling,et al.  Regulation of Ca2+/Calmodulin‐Dependent Protein Kinase II by Brain Gangliosides , 1990, Journal of neurochemistry.

[25]  Michael J. Berridge,et al.  Inositol phosphates and cell signalling , 1989, Nature.

[26]  Y. Oron,et al.  Acetylcholine promotes progesterone-induced maturation of Xenopus oocytes. , 1984, The Journal of experimental zoology.