Error estimates for the multidimensional two-phase Stefan problem

In this paper we derive rates of convergence for regularizations of the multidimen- sional two-phase Stefan problem and use the regularized problems to define backward-dif- ference in time and C° piecewise-linear in space Galerkin approximations. We find an L2 rate of convergence of order \^ in the e-regularization and an L rate of convergence of order (h2/e + Ai/ \6F) in the Galerkin estimates which leads to the natural choices £ ~ A4/3, A; ~ A4/3, and a resulting 0(/i2//3) L2 rate of convergence of the numerical scheme to the solution of the differential equation. An essentially 0(h) rate is demonstrated when e = 0 and A/ ~ h2 in our Galerkin scheme under a boundedness hypothesis on the Galerkin approxima- tions. The latter result is consistent with computational experience. 1. Introduction. Given a smoothly bounded domain s C RN, we consider the equation, in distribution form, (l.H) ^ "Au +fiu) = 0

[1]  J. Douglas,et al.  Optimal _{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems , 1975 .

[2]  G. Meyer Multidimensional Stefan Problems , 1973 .

[3]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[4]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[5]  Avner Friedman,et al.  The Stefan problem in several space variables , 1968 .

[6]  A. H. Schatz,et al.  On the quasi-optimality in _{∞} of the ¹-projection into finite element spaces , 1982 .

[7]  Gilbert Strang,et al.  Approximation in the finite element method , 1972 .

[8]  J. B. McLeod,et al.  Applications of Functional Analysis in Mathematical Physics , 1964, The Mathematical Gazette.

[9]  Hugo Ribeiro,et al.  Notas de Matemática , 1949 .

[10]  Anastas Lazaridis,et al.  A numerical solution of the multidimensional solidification (or melting) problem , 1970 .

[11]  L. R. Scott,et al.  Optimal ^{∞} estimates for the finite element method on irregular meshes , 1976 .

[12]  Milton E. Rose,et al.  A method for calculating solutions of parabolic equations with a free boundary , 1960 .

[13]  S. L. Sobolev,et al.  Applications of functional analysis in mathematical physics , 1963 .

[14]  J. Jerome Nonlinear equations of evolution and a generalized Stefan problem , 1977 .

[15]  E. Hille Functional Analysis And Semi-Groups , 1948 .

[16]  A. H. Schatz,et al.  On the Quasi-Optimality in $L_\infty$ of the $\overset{\circ}{H}^1$-Projection into Finite Element Spaces* , 1982 .

[17]  R. Rannacher,et al.  Zur L∞-Konvergenz linearer finiter Elemente beim Dirichlet-Problem , 1976 .

[18]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[19]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[20]  L. Evans,et al.  Continuity of the temperature in the two-phase Stefan problem , 1983 .

[21]  Vidar Thomée,et al.  Some Convergence Estimates for Semidiscrete Galerkin Type Approximations for Parabolic Equations , 1977 .

[22]  E. Benedetto Continuity of weak solutions to certain singular parabolic equations , 1982 .

[23]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[24]  N. R. Morgenstern,et al.  Physics, chemistry, and mechanics of frozen ground. A review : Conference. In Permafrost - North American contribution to the 2nd Internat. Conference. 11F, 182R. NAT. ACAD. SCI. WASHINGTON, 1973, P257–288 , 1974 .

[25]  J. Nitsche,et al.  L∞-convergence of finite element approximations , 1977 .

[26]  M. E. Rose,et al.  Numerical methods for flows through porous media. I , 1983 .

[27]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[28]  Haim Brezis,et al.  Semi-linear second-order elliptic equations in L 1 , 1973 .

[29]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[30]  Tosio Kato,et al.  Linear evolution equations of ``hyperbolic'' type, II , 1973 .

[31]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[32]  Alan Solomon,et al.  Some remarks on the Stefan problem , 1966 .

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  V. Thomée,et al.  Error estimates for some mixed finite element methods for parabolic type problems , 1981 .

[35]  Alain Damlamian Some results on the multi-phase stefan problem , 1977 .

[36]  J. Ciavaldini Analyse Numerique d’un Probleme de Stefan a Deux Phases Par une Methode d’Elements Finis , 1975 .