Theoretical insights into the RR Lyrae K-band period–luminosity relation

Theoretical constraints on the K-band period–luminosity (PLK) relation of RR Lyrae stars are presented, based on updated non-linear convective pulsation models that are computed for several values of stellar mass, luminosity and metallicity. We show that for each given metal content the predicted PLK is marginally dependent on uncertainties of the stellar mass and/or luminosity. Then, by considering the RR Lyrae masses suggested by evolutionary computations for the various metallicities, we state that the predicted infrared magnitude MK over the range 0.0001<Z<0.02 is given by the relation MK=0.568−2.071 log P+0.087 log Z−0.778 log L/L⊙, with a rms scatter σK=0.032 mag. Therefore, by allowing the luminosities of RR Lyrae stars to vary within the range covered by current evolutionary predictions for metal-deficient (0.0001<Z<0.006) horizontal branch models, we eventually find that the infrared period–luminosity–metallicity (PLZK) relation is MK=0.139−2.071(log P+0.30)+0.167 log Z, with a total intrinsic dispersion of σK=0.037 mag. As a consequence, the use of such a PLZK relation should constrain the infrared distance modulus of field and cluster RR Lyrae variables within ±0.04 mag, provided that accurate observations and reliable estimates of the metal content are available. Moreover, we show that the combination of K and V measurements can supply independent information on the average luminosity of RR Lyrae stars, thus yielding tight constraints on the input physics of stellar evolution computations. Finally, for globular clusters with a sizable sample of first overtone (RRc) variables, the reddening can be estimated by using the PLZK relation together with the predicted MV–log P relation at the blue edge of the instability strip (Caputo et al. 2000).

[1]  A. J. Longmore,et al.  RR Lyrae stars in globular clusters : better distances from infrared measurements ? , 1986 .

[2]  K. Janes,et al.  The luminosity scale of RR Lyrae stars with the Baade-Wesselink method. II. The absolute magnitudes of 13 field RR Lyrae stars , 1990 .

[3]  R. G. Gratton,et al.  Abundances for globular cluster giants: I. homogeneous metallicities for 24 clusters , 1996, astro-ph/9607078.

[4]  I. Skillen,et al.  The absolute magnitudes of RR Lyrae stars – I. X Arietis , 1989 .

[5]  B. Carney,et al.  The Baade-Wesselink method and the distances to RR Lyrae stars. VI: The field stars RS Bootis, TW Herculis, VY Serpentis, and UU Virginis, and the absolute magnitudes of RR Lyrae stars , 1988 .

[6]  A. Weiss,et al.  An updated theoretical scenario for globular cluster stars , 1997, astro-ph/9707180.

[7]  R. F. Jameson,et al.  The absolute magnitudes of RR Lyrae stars – V. WY Antliae, W Crateris, RV Octantis and BB Puppis , 1993 .

[8]  Robert F. Stellingwerf,et al.  Pulsation and stability of RR Lyrae stars. 1: Instability strip , 1994 .

[9]  A. Weiss,et al.  GALACTIC GLOBULAR CLUSTER STARS : FROM THEORY TO OBSERVATION , 1998, astro-ph/9811329.

[10]  I. Skillen,et al.  Globular cluster distances from the RR Lyrae log(period) - infrared magnitude relation. , 1990 .

[11]  V. Ripepi,et al.  Pulsational MV versus [Fe/H] relation(s) for globular cluster RR Lyrae variables , 2000, astro-ph/0003473.

[12]  R. Stellingwerf,et al.  Synthetic Mean Colors for RR Lyrae Variables , 1995 .

[13]  D. Kurtz The Impact of Large‐Scale Surveys on Pulsating Star Research: IAU Colloquium 176 , 2000 .

[14]  R. Merighi,et al.  The Composition of HB Stars: RR Lyrae Variables , 1995 .

[15]  Gisella Clementini,et al.  Distances, Ages, and Epoch of Formation of Globular Clusters , 1999, astro-ph/9902086.

[16]  Santi Cassisi,et al.  Metal-rich RR Lyrae Variables. I. The Evolutionary Scenario , 1996, astro-ph/9609153.

[17]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[18]  B. Carney,et al.  The Baade-Wesselink Method and the Distances to RR Lyrae Stars. VII. The Field Stars SW Andromedae and DX Delphini and a Comparison of Recent Baade-Wesselink Analyses , 1992 .

[19]  F. Caputo Evolution of Population II stars , 1998 .

[20]  Castellani,et al.  The RR Lyrae Star U Comae as a Test for Nonlinear Pulsation Models. , 2000, The Astrophysical journal.

[21]  M. Marconi,et al.  On the Theoretical Period-Radius Relation of Classical Cepheids , 1998 .

[22]  J. Nemec,et al.  Period-luminosity-metallicity relations, pulsation modes, absolute magnitudes, and distances for population 2 variable stars , 1994 .