Corneal biomechanical metrics and anterior segment parameters in mild keratoconus.

PURPOSE To compare corneal hysteresis (CH), corneal resistance factor (CRF), spherical equivalent (SE), average central keratometry (K-Avg), corneal astigmatism (CA), corneal volume (CV), anterior chamber (AC) depth, and central corneal thickness (CCT) between patients with mild keratoconus and healthy controls and to estimate the sensitivity and specificity of CH and CRF in discriminating mild keratoconus from healthy corneas. DESIGN Comparative case series. PARTICIPANTS Sixty-three eyes (40 patients) with mild keratoconus (group 1) and 80 eyes from 40 gender- and age-matched controls (group 2). METHODS Patients underwent a complete clinical eye examination, corneal topography (Humphrey ATLAS; Carl Zeiss Meditec, Dublin, CA), tomography (Pentacam; Oculus, Wetzlar, Germany), and biomechanical evaluations (ocular response analyzer; Reichert Ophthalmic Instruments, Depew, NY). The receiver operating characteristic (ROC) curve was used to identify cutoff points that maximized sensitivity and specificity in discriminating mild keratoconus from normal corneas. MAIN OUTCOME MEASURES Corneal hysteresis, CRF, SE, K-Avg, CA, CV, AC depth, and CCT. The diagnostic performance of CH and CRF for detecting mild keratoconus was assessed using the ROC curve. RESULTS In group 1 versus group 2, the SE values (mean+/-standard deviation) were -3.55+/-2.87 diopters (D) versus -1.46+/-3.09 D (P = 0); K-Avg, 45.09+/-2.24 versus 43.24+/-1.54 D (P = 0); CA, 3.15+/-1.87 versus 1.07+/-0.83 D (P = 0); CV, 57.3+/-2.12 versus 60.86+/-3.39 mm3 (P = 0); AC depth, 3.19+/-0.35 versus 3.05+/-0.43 mm (P = 0.0416); CCT, 503+/-34.15 versus 544.71+/-35.89 microm (P = 0); CH, 8.50+/-1.36 versus 10.17+/-1.79 mmHg (P = 0); CRF, 7.85+/-1.49 versus 10.13+/-2.0 mmHg (P = 0). The ROC curve analyses showed a poor overall predictive accuracy of CH (cutoff, 9.64 mmHg; sensitivity, 87%; specificity, 65%; test accuracy, 74.83%) and CRF (cutoff, 9.60 mmHg; sensitivity, 90.5%; specificity, 66%; test accuracy, 76.97%) for detecting mild keratoconus. CONCLUSIONS The values for CH, CRF, CV, and CCT were statistically lower and those for SE, K-Avg, CA, and AC depth were statistically higher in patients with mild keratoconus compared with controls. Corneal hysteresis and CRF were poor parameters for discriminating between mild keratoconus and normal corneas. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.

[1]  Jianhua Wang,et al.  Biomechanical properties of the cornea in high myopia , 2008, Vision Research.

[2]  M. Belin,et al.  Keratoconus: it is hard to define, but ... , 2007, American journal of ophthalmology.

[3]  L. Richiardi,et al.  Reproducibility and repeatability of central corneal thickness measurement in keratoconus using the rotating Scheimpflug camera and ultrasound pachymetry. , 2007, American journal of ophthalmology.

[4]  V. Maertelaer,et al.  Effect of topical corneal anaesthesia on ocular response analyzer parameters: pilot study , 2009, International Ophthalmology.

[5]  C. Villa-Collar,et al.  Pilot Study on the Influence of Corneal Biomechanical Properties Over the Short Term in Response to Corneal Refractive Therapy for Myopia , 2008, Cornea.

[6]  Damien Gatinel,et al.  Corneal hysteresis, resistance factor, topography, and pachymetry after corneal lamellar flap. , 2007, Journal of refractive surgery.

[7]  Renato Ambrósio,et al.  Progressão da espessura corneana do ponto mais fino em direção ao limbo: estudo de uma população normal e de portadores de ceratocone para criação de valores de referência , 2006 .

[8]  X. Pan,et al.  The use of the Ocular Response Analyser to determine corneal hysteresis in eyes before and after excimer laser refractive surgery. , 2009, Contact lens & anterior eye : the journal of the British Contact Lens Association.

[9]  C. Qualls,et al.  Ocular Response Analyzer in Subjects with and without Glaucoma , 2008, Optometry and vision science : official publication of the American Academy of Optometry.

[10]  N. Congdon,et al.  Corneal hysteresis and axial length among Chinese secondary school children: the Xichang Pediatric Refractive Error Study (X-PRES) report no. 4. , 2008, American journal of ophthalmology.

[11]  K. Velten,et al.  Finite-element simulation of corneal applanation. , 2006, Journal of cataract and refractive surgery.

[12]  Y. Rabinowitz,et al.  Computer-assisted corneal topography in keratoconus. , 1989, Refractive & corneal surgery.

[13]  A. Lam,et al.  Comparison of IOP Measurements Between ORA and GAT in Normal Chinese , 2007, Optometry and vision science : official publication of the American Academy of Optometry.

[14]  S. Yoloğlu,et al.  Evaluation of anterior segment parameters in keratoconic eyes measured with the Pentacam system , 2007, Journal of cataract and refractive surgery.

[15]  S. Shah,et al.  Comparison of corneal biomechanics in pre and post-refractive surgery and keratoconic eyes by Ocular Response Analyser. , 2009, Contact lens & anterior eye : the journal of the British Contact Lens Association.

[16]  David Touboul,et al.  Biomechanical characteristics of the ectatic cornea , 2008, Journal of cataract and refractive surgery.

[17]  K. Stonecipher,et al.  Advances in refractive surgery: microkeratome and femtosecond laser flap creation in relation to safety, efficacy, predictability, and biomechanical stability , 2006, Current opinion in ophthalmology.

[18]  C. McGhee 2008 Sir Norman McAlister Gregg Lecture: 150 years of practical observations on the conical cornea – what have we learned? , 2009, Clinical & experimental ophthalmology.

[19]  I. Cunliffe,et al.  Diurnal variation of ocular hysteresis in normal subjects: relevance in clinical context , 2006, Clinical & experimental ophthalmology.

[20]  T. Couper,et al.  Prevalence of Orbscan II corneal abnormalities in relatives of patients with keratoconus , 2008, Clinical & experimental ophthalmology.

[21]  A. Lam,et al.  A pilot study on the corneal biomechanical changes in short‐term orthokeratology , 2009, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[22]  J. Wolffsohn,et al.  Accuracy of Goldmann, ocular response analyser, Pascal and TonoPen XL tonometry in keratoconic and normal eyes , 2008, British Journal of Ophthalmology.

[23]  Ahmed Elsheikh,et al.  Experimental Assessment of Human Corneal Hysteresis , 2008, Current eye research.

[24]  Steven E. Wilson,et al.  Biomechanics and wound healing in the cornea. , 2006, Experimental eye research.

[25]  J. García-Feijóo,et al.  Ocular response analyzer versus Goldmann applanation tonometry for intraocular pressure measurements. , 2006, Investigative ophthalmology & visual science.

[26]  N. Ehlers,et al.  Corneal thickness: measurement and implications. , 2004, Experimental eye research.

[27]  Y. Chan,et al.  Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children. , 2008, Investigative ophthalmology & visual science.

[28]  David Touboul,et al.  Correlations between corneal hysteresis, intraocular pressure, and corneal central pachymetry , 2008, Journal of cataract and refractive surgery.

[29]  Ö. Uçakhan,et al.  Corneal thickness measurements in normal and keratoconic eyes: Pentacam comprehensive eye scanner versus noncontact specular microscopy and ultrasound pachymetry , 2006, Journal of cataract and refractive surgery.

[30]  Terry Kim,et al.  Keratoconus in the Medicare Population , 2009, Cornea.

[31]  I. Cunliffe,et al.  Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. , 2007, Investigative ophthalmology & visual science.

[32]  M. O'Keefe,et al.  Corneal Hysteresis and Corneal Resistance Factor in Keratoectasia: Findings Using the Reichert Ocular Response Analyzer , 2008, Ophthalmologica.

[33]  M. Seguí-Gómez,et al.  Reproducibility and clinical relevance of the ocular response analyzer in nonoperated eyes: corneal biomechanical and tonometric implications. , 2008, Investigative ophthalmology & visual science.

[34]  Walton Nosé,et al.  Corneal biomechanical metrics in eyes with refraction of -19.00 to +9.00 D in healthy Brazilian patients. , 2008, Journal of refractive surgery.

[35]  William J Dupps,et al.  Hysteresis: new mechanospeak for the ophthalmologist. , 2007, Journal of cataract and refractive surgery.

[36]  D. Luce Determining in vivo biomechanical properties of the cornea with an ocular response analyzer , 2005, Journal of cataract and refractive surgery.

[37]  Felipe A. Medeiros,et al.  Evaluation of the Influence of Corneal Biomechanical Properties on Intraocular Pressure Measurements Using the Ocular Response Analyzer , 2006, Journal of glaucoma.

[38]  Eberhard Spoerl,et al.  Biomechanical evidence of the distribution of cross‐links in corneastreated with riboflavin and ultraviolet A light , 2006, Journal of cataract and refractive surgery.

[39]  F. Ascaso,et al.  Biomechanical properties of the cornea in Fuchs' corneal dystrophy. , 2009, Investigative ophthalmology & visual science.

[40]  P. Binder Ectasia after laser in situ keratomileusis , 2003, Journal of cataract and refractive surgery.

[41]  R. Krueger,et al.  Central and Peripheral Corneal Thickness as Measured With Optical Coherence Tomography, Scheimpflug, and Ultrasound Pachymetry in Normal, Keratoconus Suspect and Post Lasik Eyes , 2009 .

[42]  Caitriona Kirwan,et al.  Corneal hysteresis using the Reichert ocular response analyser: findings pre‐ and post‐LASIK and LASEK , 2008, Acta ophthalmologica.

[43]  Y. Gerber,et al.  Effect of diabetes mellitus on biomechanical parameters of the cornea , 2009, Journal of cataract and refractive surgery.

[44]  Sunil Shah,et al.  The use of the Reichert ocular response analyser to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes. , 2006, Contact lens & anterior eye : the journal of the British Contact Lens Association.

[45]  M. Belin,et al.  Posterior elevation in keratoconus. , 2009, Ophthalmology.

[46]  N. Yenerel,et al.  Corneal biomechanical properties and intraocular pressure changes after phacoemulsification and intraocular lens implantation , 2008, Journal of cataract and refractive surgery.

[47]  Randleman Jb Post-laser in-situ keratomileusis ectasia: current understanding and future directions. , 2006 .

[48]  P. Condon 2005 ESCRS Ridley Medal Lecture: Will keratectasia be a major complication for LASIK in the long term? , 2006, Journal of cataract and refractive surgery.

[49]  Mujtaba A. Qazi,et al.  Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry. , 2007, American journal of ophthalmology.

[50]  Jianhua Wang,et al.  Diurnal Variation of Ocular Hysteresis, Corneal Thickness, and Intraocular Pressure , 2008, Optometry and vision science : official publication of the American Academy of Optometry.

[51]  J. Alió,et al.  Corneal biomechanical properties in normal, post‐laser in situ keratomileusis, and keratoconic eyes , 2007, Journal of cataract and refractive surgery.

[52]  T. Oshika,et al.  Longitudinal analysis of corneal topography in suspected keratoconus , 2008, British Journal of Ophthalmology.

[53]  R. D. Stulting,et al.  Corneal Ectasia After Laser In Situ Keratomileusis in Patients Without Apparent Preoperative Risk Factors , 2006, Cornea.

[54]  M. Belin,et al.  An introduction to understanding elevation‐based topography: how elevation data are displayed – a review , 2009, Clinical & experimental ophthalmology.

[55]  P. Hossain,et al.  Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis? , 2007, British Journal of Ophthalmology.

[56]  Marco A Miranda,et al.  Repeatability of Corneal Thickness Measured Using an Oculus Pentacam , 2009, Optometry and vision science : official publication of the American Academy of Optometry.

[57]  R. Vinciguerra,et al.  Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. , 2009, Ophthalmology.

[58]  Renato Ambrósio,et al.  [Corneal thickness progression from the thinnest point to the limbus: study based on a normal and a keratoconus population to create reference values]. , 2006, Arquivos brasileiros de oftalmologia.

[59]  J. L. Mato,et al.  Corneal Descriptive Indices in the Fellow Eye of Unilateral Keratoconus , 2009, Eye & contact lens.

[60]  T. Swartz,et al.  Measuring the cornea: the latest developments in corneal topography , 2007, Current opinion in ophthalmology.

[61]  L. Richiardi,et al.  Sensitivity and specificity of posterior corneal elevation measured by Pentacam in discriminating keratoconus/subclinical keratoconus. , 2008, Ophthalmology.

[62]  M. Grossherr,et al.  Changes in corneal hysteresis after clear corneal cataract surgery. , 2007, American journal of ophthalmology.

[63]  Caitriona Kirwan,et al.  Corneal hysteresis and intraocular pressure measurement in children using the reichert ocular response analyzer. , 2006, American journal of ophthalmology.

[64]  J. B. Randleman,et al.  Post-laser in-situ keratomileusis ectasia: current understanding and future directions , 2006, Current opinion in ophthalmology.

[65]  A. Wells,et al.  Recovery of corneal hysteresis after reduction of intraocular pressure in chronic primary angle-closure glaucoma. , 2010, American journal of ophthalmology.

[66]  Hager Annette,et al.  Effect of Central Corneal Thickness and Corneal Hysteresis on Tonometry as Measured by Dynamic Contour Tonometry, Ocular Response Analyzer, and Goldmann Tonometry in Glaucomatous Eyes , 2008 .

[67]  T. Spector,et al.  The heritability of corneal hysteresis and ocular pulse amplitude: a twin study. , 2008, Ophthalmology.

[68]  Sunil Shah,et al.  Ocular response analyser to assess hysteresis and corneal resistance factor in low tension, open angle glaucoma and ocular hypertension , 2008, Clinical & experimental ophthalmology.

[69]  Robert J. Anderson,et al.  A New Method for Grading the Severity of Keratoconus: The Keratoconus Severity Score (KSS) , 2006, Cornea.

[70]  Aachal Kotecha,et al.  What biomechanical properties of the cornea are relevant for the clinician? , 2007, Survey of ophthalmology.

[71]  J. Alió,et al.  Pentacam posterior and anterior corneal aberrations in normal and keratoconic eyes , 2009, Clinical & experimental optometry.

[72]  C. McGhee,et al.  Assessing computerized tomography and higher‐order aberration in the diagnosis of manifest and subclinical keratoconus , 2008, Clinical & experimental ophthalmology.

[73]  T. Schlote,et al.  Repeatability of Intraocular Pressure and Corneal Biomechanical Properties Measurements by the Ocular Response Analyser , 2008, Klinische Monatsblatter fur Augenheilkunde.

[74]  Teruyo Kida,et al.  Effects of aging on corneal biomechanical properties and their impact on 24-hour measurement of intraocular pressure. , 2008, American journal of ophthalmology.

[75]  Yan Li,et al.  Keratoconus diagnosis with optical coherence tomography pachymetry mapping. , 2008, Ophthalmology.

[76]  J. González-Méijome,et al.  Intraoffice Variability of Corneal Biomechanical Parameters and Intraocular Pressure (IOP) , 2008, Optometry and vision science : official publication of the American Academy of Optometry.

[77]  K. Shimizu,et al.  Factors affecting corneal hysteresis in normal eyes , 2008, Graefe's Archive for Clinical and Experimental Ophthalmology.

[78]  Rex D. Hamilton,et al.  Corneal biomechanical measurements before and after laser in situ keratomileusis , 2008, Journal of cataract and refractive surgery.

[79]  D. Buxton,et al.  Bilateral keratectasia after unilateral laser in situ keratomileusis: a retrospective diagnosis of ectatic corneal disorder. , 2003, Journal of cataract and refractive surgery.

[80]  C. R. Ethier,et al.  Ocular biomechanics and biotransport. , 2004, Annual review of biomedical engineering.

[81]  I. Avni,et al.  Can We Measure Corneal Biomechanical Changes After Collagen Cross-Linking in Eyes With Keratoconus?-A Pilot Study , 2009, Cornea.

[82]  Craig Boote,et al.  Mapping collagen organization in the human cornea: left and right eyes are structurally distinct. , 2006, Investigative ophthalmology & visual science.

[83]  Allan Luz,et al.  Corneal‐thickness spatial profile and corneal‐volume distribution: Tomographic indices to detect keratoconus , 2006, Journal of cataract and refractive surgery.

[84]  K. Shimizu,et al.  Repeatability, reproducibility, and agreement characteristics of rotating Scheimpflug photography and scanning‐slit corneal topography for corneal power measurement , 2009, Journal of cataract and refractive surgery.