Identifying Anomalous Social Contexts from Mobile Proximity Data Using Binomial Mixture Models
暂无分享,去创建一个
Timo Honkela | Oskar Kohonen | Krista Lagus | Eric Malmi | Juha Raitio | T. Honkela | K. Lagus | Oskar Kohonen | Eric Malmi | J. Raitio
[1] Alex Pentland,et al. Reality mining: sensing complex social systems , 2006, Personal and Ubiquitous Computing.
[2] M. Stone. Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .
[3] W. Eric L. Grimson,et al. Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).
[4] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[5] Tapani Raiko,et al. Semi-supervised detection of collective anomalies with an application in high energy particle physics , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).
[6] Daniel Gatica-Perez,et al. Human interaction discovery in smartphone proximity networks , 2013, Personal and Ubiquitous Computing.
[7] D. Gática-Pérez,et al. Towards rich mobile phone datasets: Lausanne data collection campaign , 2010 .
[8] VARUN CHANDOLA,et al. Anomaly detection: A survey , 2009, CSUR.
[9] Inderjit S. Dhillon,et al. Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..
[10] Trygve Almøy,et al. Microbial comparative pan-genomics using binomial mixture models , 2009, BMC Genomics.
[11] Graham J. Williams,et al. On-Line Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms , 2000, KDD '00.
[12] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.
[13] Andrew R. Getzfeld. Essentials of Abnormal Psychology , 2006 .
[14] Stephen J. Roberts,et al. A Probabilistic Resource Allocating Network for Novelty Detection , 1994, Neural Computation.