Strengthening the Hydrogen-Bond Network for Practical Aqueous Aluminum-Air Battery

[1]  Hong Wang,et al.  Modification on water electrochemical environment for durable Al-Air Battery: Achieved by a Low-Cost sucrose additive , 2022, Chemical Engineering Journal.

[2]  H. Hardhienata,et al.  Effects of Salt Concentration on the Water and Ion Self-Diffusion Coefficients of a Model Aqueous Sodium-Ion Battery Electrolyte. , 2022, The journal of physical chemistry. B.

[3]  Haiyan Wang,et al.  A Review of Al Alloy Anodes for Al–Air Batteries in Neutral and Alkaline Aqueous Electrolytes , 2020, Acta Metallurgica Sinica (English Letters).

[4]  M. Salanne,et al.  Computational Screening of the Physical Properties of Water‐in‐Salt Electrolytes** , 2020, Batteries & Supercaps.

[5]  Haiyan Wang,et al.  Hybrid high-concentration electrolyte significantly strengthens the practicability of alkaline aluminum-air battery , 2020 .

[6]  G. Cui,et al.  Hydrated Eutectic Electrolytes with Ligand-Oriented Solvation Shells for Long-Cycling Zinc-Organic Batteries , 2020 .

[7]  Song Xue,et al.  How the Nature of the Alkali Metal Cations Influences the Double-Layer Capacitance of Cu, Au, and Pt Single-Crystal Electrodes , 2020 .

[8]  G. Sun,et al.  Aqueous metal-air batteries: Fundamentals and applications , 2020 .

[9]  Qi Zhang,et al.  Understanding the synergistic effect of alkyl polyglucoside and potassium stannate as advanced hybrid corrosion inhibitor for alkaline aluminum-air battery , 2020, Chemical Engineering Journal.

[10]  Long Chen,et al.  A 63 m Superconcentrated Aqueous Electrolyte for High-Energy Li-Ion Batteries , 2020, ACS Energy Letters.

[11]  Peiyi Wu,et al.  Exploring the diffusion behavior of urea aqueous solution in the viscose film by ATR-FTIR spectroscopy , 2020, Cellulose.

[12]  Hao Zhang,et al.  Inhibitive effect of quaternary ammonium-type surfactants on the self-corrosion of the anode in alkaline aluminium-air battery , 2019, Journal of Power Sources.

[13]  Ehsan Faegh,et al.  In-depth structural understanding of zinc oxide addition to alkaline electrolytes to protect aluminum against corrosion and gassing , 2019, Journal of Applied Electrochemistry.

[14]  Chenglong Zhao,et al.  Building aqueous K-ion batteries for energy storage , 2019, Nature Energy.

[15]  Bingbing Chen,et al.  “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries , 2019, Nano Energy.

[16]  Jaephil Cho,et al.  Advanced Technologies for High‐Energy Aluminum–Air Batteries , 2018, Advanced materials.

[17]  I. Park,et al.  Aluminum anode for aluminum-air battery – Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution , 2017 .

[18]  Yuki Yamada,et al.  Hydrate-melt electrolytes for high-energy-density aqueous batteries , 2016, Nature Energy.

[19]  Kang Xu,et al.  “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries , 2015, Science.

[20]  L. Gao,et al.  Evaluation of AA5052 alloy anode in alkaline electrolyte with organic rare-earth complex additives for aluminium-air batteries , 2015 .

[21]  Jingling Ma,et al.  Performance of Al–0.5 Mg–0.02 Ga–0.1 Sn–0.5 Mn as anode for Al–air battery in NaCl solutions , 2014 .

[22]  Wim F Vranken,et al.  ACPYPE - AnteChamber PYthon Parser interfacE , 2012, BMC Research Notes.

[23]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[24]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[25]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[26]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[27]  K. Roberts,et al.  An examination of the crystallization of urea from supersaturated aqueous and aqueous-methanol solutions as monitored in-process using ATR FTIR spectroscopy , 2004 .

[28]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[29]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[30]  I. Ando,et al.  Intermolecular hydrogen-bonding effect on carbon-13 NMR chemical shifts of glycine residue carbonyl carbons of peptides in the solid state , 1988 .

[31]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[32]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[33]  W. L. Jorgensen,et al.  Energy component analysis for dilute aqueous solutions of lithium(1+), sodium(1+), fluoride(1-), and chloride(1-) ions , 1984 .

[34]  D. Rapaport Hydrogen bonds in water , 1983 .

[35]  S. Maeda,et al.  Hydrogen bonding and conformational effects on13 chemical shifts of hydroxybenzaldehydes in the solid state , 1983 .