Periodicity in tilings

Tilings and tiling systems are an abstract concept that arise both as a computational model and as a dynamical system. In this paper, we prove an analog of the theorems of Fagin [9] and Selman and Jones [14] by characterizing sets of periods of tiling systems by complexity classes.

[1]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[2]  J. R. Büchi Turing-machines and the Entscheidungsproblem , 1962 .

[3]  José L. Balcázar,et al.  Structural Complexity II , 2012, EATCS.

[4]  D. Harel Recurring dominoes: making the highly undecidable highly understandable , 1985 .

[5]  Paul Gastin,et al.  Journal of Automata, Languages and Combinatorics, Vol. 11(1) , 2006 .

[6]  M. Misiurewicz,et al.  Periodic points and topological entropy of one dimensional maps , 1980 .

[7]  Robert L. Berger The undecidability of the domino problem , 1966 .

[8]  Y. Gurevich On Finite Model Theory , 1990 .

[9]  Tom Meyerovitch,et al.  A Characterization of the Entropies of Multidimensional Shifts of Finite Type , 2007, math/0703206.

[10]  S. G. Simpson Medvedev degrees of two-dimensional subshifts of finite type , 2012, Ergodic Theory and Dynamical Systems.

[11]  Ivan Flores Reflected Number Systems , 1956, IRE Trans. Electron. Comput..

[12]  Donald E. Knuth,et al.  Generating all tuples and permutations , 2005 .

[13]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .

[14]  Hao Wang,et al.  Proving theorems by pattern recognition I , 1960, Commun. ACM.

[15]  Y. Gurevich,et al.  Remarks on Berger's paper on the domino problem , 1972 .

[16]  Bernd Borchert Formal Language Characterizations of P, NP, and PSPACE , 2008, J. Autom. Lang. Comb..

[17]  Tom Meyerovitch Growth-type invariants for $\mathbb{Z}^d$ subshifts of finite type and classes arithmetical of real numbers , 2009, 0902.0223.

[18]  Hao Wang Proving theorems by pattern recognition — II , 1961 .

[19]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[20]  Jarkko Kari,et al.  Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..

[21]  José L. Balcázar,et al.  Structural complexity 2 , 1990 .

[22]  Gregory J. Chaitin,et al.  The Halting Probability via Wang Tiles , 2008, Fundam. Informaticae.

[23]  Nathalie Aubrun,et al.  An Order on Sets of Tilings Corresponding to an Order on Languages , 2009, STACS.

[24]  Antoine Meyer,et al.  Context-Sensitive Languages, Rational Graphs and Determinism , 2006, Log. Methods Comput. Sci..

[25]  Neil D. Jones,et al.  Turing machines and the spectra of first-order formulas with equality , 1972, STOC.

[26]  Jarkko Kari The Nilpotency Problem of One-Dimensional Cellular Automata , 1992, SIAM J. Comput..

[27]  Brijesh Dongol,et al.  Extending the theory of Owicki and Gries with a logic of progress , 2005, Log. Methods Comput. Sci..

[28]  Neil Immerman,et al.  Nondeterministic space is closed under complementation , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[29]  Jarkko Kari,et al.  Deterministic Aperiodic Tile Sets , 1999 .

[30]  J. Dassow Context‐Sensitive Languages , 1999 .