Excitonic Effects in Tungsten Disulfide Monolayers on Two-Layer Graphene.

Light emission in atomically thin heterostructures is known to depend on the type of materials and the number and stacking sequence of the constituent layers. Here we show that the thickness of a two-dimensional substrate can be crucial in modulating the light emission. We study the layer-dependent charge transfer in vertical heterostructures built from monolayer tungsten disulfide (WS2) on one- and two-layer epitaxial graphene, unravelling the effect that the interlayer electronic coupling has on the excitonic properties of such heterostructures. We bring evidence that the excitonic properties of WS2 can be effectively tuned by the number of supporting graphene layers. Integrating WS2 monolayers with two-layer graphene leads to a significant enhancement of the photoluminescence response, up to 1 order of magnitude higher compared to WS2 supported on one-layer graphene. Our findings highlight the importance of substrate engineering when constructing atomically thin-layered heterostructures.

[1]  R. Myers-Ward,et al.  Atmospheric doping effects in epitaxial graphene: correlation of local and global electrical studies , 2016, 1804.09592.

[2]  M. Hersam,et al.  Rotationally Commensurate Growth of MoS2 on Epitaxial Graphene. , 2016, ACS nano.

[3]  L. O. Nyakiti,et al.  Water Affinity to Epitaxial Graphene: The Impact of Layer Thickness , 2015, 1804.09989.

[4]  Kenji Watanabe,et al.  Picosecond photoresponse in van der Waals heterostructures. , 2015, Nature nanotechnology.

[5]  Yu Kobayashi,et al.  Growth and optical properties of high-quality monolayer WS 2 on graphite , 2015 .

[6]  Fengmin Wu,et al.  Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS2 and WS2 , 2015 .

[7]  J. Robinson,et al.  Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. , 2015, ACS nano.

[8]  Hiroki Hibino,et al.  Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite. , 2015, ACS nano.

[9]  Kazuhiro Yamamoto,et al.  Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene. , 2015, ACS applied materials & interfaces.

[10]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[11]  Hsin-Ying Chiu,et al.  Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures , 2014, Nature Communications.

[12]  Moon J. Kim,et al.  Atomically thin heterostructures based on single-layer tungsten diselenide and graphene. , 2014, Nano letters.

[13]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[14]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[15]  Nathan Youngblood,et al.  Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current , 2014, Nature Photonics.

[16]  Alessandra Manzin,et al.  Visualisation of edge effects in side-gated graphene nanodevices , 2014, Scientific Reports.

[17]  Chi Won Ahn,et al.  Large-area single-layer MoSe2 and its van der Waals heterostructures. , 2014, ACS nano.

[18]  S. Khondaker,et al.  Photoluminescence quenching in gold - MoS2 hybrid nanoflakes , 2014, Scientific Reports.

[19]  Xiaodong Cui,et al.  Exciton Binding Energy of Monolayer WS2 , 2014, Scientific Reports.

[20]  T. Seyller,et al.  Ultrafast dynamics of massive dirac fermions in bilayer graphene. , 2014, Physical review letters.

[21]  Yu-Lun Chueh,et al.  Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures , 2014, Scientific Reports.

[22]  Chang-wen Zhang,et al.  First-principles study of graphene adsorbed on WS2 monolayer , 2013 .

[23]  Arindam Ghosh,et al.  Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. , 2013, Nature nanotechnology.

[24]  Luca Moreschini,et al.  Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene. , 2013, Nature materials.

[25]  Y. Miyauchi,et al.  Tunable photoluminescence of monolayer MoS₂ via chemical doping. , 2013, Nano letters.

[26]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[27]  R. Yakimova,et al.  Standardization of surface potential measurements of graphene domains , 2013, Scientific Reports.

[28]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[29]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[30]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[31]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[32]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[33]  Ruitao Lv,et al.  Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. , 2012, Nano letters.

[34]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[35]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[36]  S. V. Morozov,et al.  Tunable metal-insulator transition in double-layer graphene heterostructures , 2011, 1107.0115.

[37]  C. Coletti,et al.  Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping , 2010 .

[38]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[39]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[40]  Roland Bennewitz,et al.  Local work function measurements of epitaxial graphene , 2008 .

[41]  D. R. Strachan,et al.  Surface potentials and layer charge distributions in few-layer graphene films. , 2008, Nano letters.

[42]  C. Berger,et al.  Epitaxial graphene , 2007, 0704.0285.

[43]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[44]  Andreas Klein,et al.  Electronic band structure of single-crystal and single-layer WS 2 : Influence of interlayer van der Waals interactions , 2001 .

[45]  J. Shan,et al.  Observation of tightly bound trions in monolayer MoS , 2012 .