Crystal structure and prediction.

The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.

[1]  Roger J. Davey,et al.  Polymorph selection: challenges for the future? , 2003 .

[2]  Amol G. Dikundwar,et al.  Third Polymorph of Phenylacetylene , 2010 .

[3]  Tejender S. Thakur,et al.  Polymorphs, Pseudopolymorphs, and Co-Crystals of Orcinol: Exploring the Structural Landscape with High Throughput Crystallography , 2011 .

[4]  R. Gdanitz,et al.  Ab Initio prediction of possible crystal structures for general organic molecules , 1992 .

[5]  G. Beran,et al.  Predicting Organic Crystal Lattice Energies with Chemical Accuracy , 2010 .

[6]  Arnold T. Hagler,et al.  Crystal packing, hydrogen bonding, and the effect of crystal forces on molecular conformation , 1980 .

[7]  James R. Holden,et al.  Prediction of possible crystal structures for C‐, H‐, N‐, O‐, and F‐containing organic compounds , 1993, J. Comput. Chem..

[8]  Ashwini Nangia,et al.  Conformational polymorphism in organic crystals. , 2008, Accounts of chemical research.

[9]  Michele Parrinello,et al.  Exploring polymorphism : The case of benzene , 2005 .

[10]  D. E. Williams,et al.  Ab initio molecular packing analysis , 1996 .

[11]  G. Desiraju,et al.  Crystal structure prediction of aminols: advantages of a supramolecular synthon approach with experimental structures. , 2005, Journal of the American Chemical Society.

[12]  T. Sakurai The crystal structure of the triclinic modification of quinhydrone , 1965 .

[13]  P. Cozzini,et al.  Ligand behaviour and reactivity of phenyl 2-pyridyl ketone azine. Structures of two polymorphic forms of the azine and a copper complex of the 3-phenyltriazolo[1,5-a]pyridine* , 1998 .

[14]  T. Friščić,et al.  Engineering cocrystal and polymorph architecture via pseudoseeding. , 2009, Chemical communications.

[15]  Amol G. Dikundwar,et al.  Structural Variability in the Monofluoroethynylbenzenes Mediated through Interactions Involving “Organic” Fluorine , 2011 .

[16]  F. Leusen,et al.  Progress in crystal structure prediction. , 2011, Chemistry.

[17]  George M. Whitesides,et al.  Predicting Crystalline Packing Arrangements of Molecules That Form Hydrogen-Bonded Tapes , 1999 .

[18]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  G. Desiraju,et al.  Searching for a polymorph: second crystal form of 6-amino-2-phenylsulfonylimino-1,2-dihydropyridine. , 2003, Angewandte Chemie.

[20]  Many-body dispersion interactions in molecular crystal polymorphism. , 2012, Angewandte Chemie.

[21]  Gautam R. Desiraju,et al.  The Weak Hydrogen Bond: In Structural Chemistry and Biology , 1999 .

[22]  Sir W H Bragg The Structure of Organic Crystals , 1921 .

[23]  A. Kitaĭgorodskiĭ The principle of close packing and the condition of thermodynamic stability of organic crystals , 1965 .

[24]  G. Beran,et al.  Accidental Degeneracy in Crystalline Aspirin: New Insights from High-Level ab Initio Calculations , 2012 .

[25]  Gautam R Desiraju,et al.  Crystal engineering: a holistic view. , 2007, Angewandte Chemie.

[26]  Michele Parrinello,et al.  The thermal stability of lattice-energy minima of 5-fluorouracil: metadynamics as an aid to polymorph prediction. , 2008, The journal of physical chemistry. B.

[27]  David J. Willock,et al.  The relaxation of molecular crystal structures using a distributed multipole electrostatic model , 1995, J. Comput. Chem..

[28]  A. Stone,et al.  THE ANISOTROPY OF THE CL2-CL2 PAIR POTENTIAL AS SHOWN BY THE CRYSTAL-STRUCTURE - EVIDENCE FOR INTERMOLECULAR BONDING OR LONE PAIR EFFECTS , 1982 .

[29]  Sarah L Price,et al.  Crystal structure prediction of small organic molecules: a second blind test. , 2002, Acta crystallographica. Section B, Structural science.

[30]  A. Gavezzotti Structure and intermolecular potentials in molecular crystals , 2002 .

[31]  A. Gavezzotti,et al.  Generation of possible crystal structures from molecular structure for low-polarity organic compounds , 1991 .

[32]  G. Desiraju,et al.  Tautomeric polymorphism in omeprazole. , 2007, Chemical communications.

[33]  F. Leusen,et al.  Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals. , 2009, The journal of physical chemistry. B.

[34]  A. Tkatchenko,et al.  Role of dispersion interactions in the polymorphism and entropic stabilization of the aspirin crystal. , 2014, Physical review letters.

[35]  S. Hirata,et al.  Ab initio molecular crystal structures, spectra, and phase diagrams. , 2014, Accounts of chemical research.

[36]  J. Robertson Organic Crystals and Molecules: Theory of X-Ray Structure Analysis With Applications to Organic Chemistry , 1953 .

[37]  A. Matzger,et al.  Nonamorphism in flufenamic acid and a new record for a polymorphic compound with solved structures. , 2012, Journal of the American Chemical Society.

[38]  D. Williams,et al.  Transferability of nonbonded Cl⋯Cl potential energy function to crystalline chlorine , 1985 .

[39]  Gautam R. Desiraju,et al.  Virtual Screening of 4-Anilinoquinazoline Analogues as EGFR Kinase Inhibitors: Importance of Hydrogen Bonds in the Evaluation of Poses and Scoring Functions , 2005, J. Chem. Inf. Model..

[40]  G. Desiraju,et al.  Structural landscape of benzoic acid: using experimental crystal structures of fluorobenzoic acids as a probe. , 2012, Chemical communications.

[41]  Giuseppe Filippini,et al.  Computer Prediction of Organic Crystal Structures Using Partial X-ray Diffraction Data , 1996 .

[42]  A. Hagler,et al.  The generation of possible crystal structures of primary amides , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[43]  Jan Kroon,et al.  Attempted prediction of the crystal structures of six monosaccharides , 1995 .

[44]  John Maddox,et al.  Waves caused by extreme dilution , 1988, Nature.

[45]  Gautam R. Desiraju,et al.  Crystal Gazing: Structure Prediction and Polymorphism , 1997, Science.

[46]  M. Gillan,et al.  Extension of molecular electronic structure methods to the solid state: computation of the cohesive energy of lithium hydride. , 2006, Physical chemistry chemical physics : PCCP.

[47]  G. Desiraju,et al.  Unusual co-crystal of isonicotinamide: the structural landscape in crystal engineering , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  L. Pauling THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS , 1929 .

[49]  G. Desiraju,et al.  Structural landscape of the 1 : 1 benzoic acid : isonicotinamide cocrystal. , 2014, Chemical communications.

[50]  George S. Hammond,et al.  A Correlation of Reaction Rates , 1955 .

[51]  W. Wong-Ng,et al.  Anisotropic atom–atom forces and the space group of solid chlorine , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[52]  L. Addadi,et al.  Control of polymorphism by ‘tailor‐made’ polymeric crystallization auxiliaries. Preferential precipitation of a metastable polar form for second harmonic generation , 1990 .

[53]  H A Scheraga,et al.  Theoretical prediction of a crystal structure. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[54]  G. Desiraju Chemistry: The Middle Kingdom , 2007 .

[55]  A. Kitaĭgorodskiĭ Calculation of molecular conformation and packing in crystals by means of atom-atom potentials☆ , 1968 .

[56]  Thomas Lengauer,et al.  A Discrete Algorithm for Crystal Structure Prediction of Organic Molecules , 1997 .

[57]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[58]  J. Robertson The Structure of Resorcinol A Quantitative X-Ray Investigation , 1936 .

[59]  G. Desiraju,et al.  Pseudoinversion centers in space group P1 and a redetermination of the crystal structure of 3,4-dimethoxycinnamic acid. A study of non-crystallographic symmetry , 1991 .

[60]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[61]  F. Herbstein,et al.  Composite hexabromobenzene crystals , 1963 .

[62]  Gautam R. Desiraju,et al.  The Supramolecular Synthon Approach to Crystal Structure Prediction , 2002 .

[63]  S. Price,et al.  Complex Polymorphic System of Gallic Acid—Five Monohydrates, Three Anhydrates, and over 20 Solvates , 2012, Crystal growth & design.

[64]  M. Probert,et al.  Polymorphism Arising from Differing Rates of Compression of Liquids , 2014 .

[65]  Tejender S. Thakur,et al.  Significant progress in predicting the crystal structures of small organic molecules--a report on the fourth blind test. , 2009, Acta crystallographica. Section B, Structural science.

[66]  Donald E. Williams Nonbonded Potential Parameters Derived from Crystalline Aromatic Hydrocarbons , 1966 .

[67]  F. Leusen,et al.  Molecule VI, a benchmark crystal-structure-prediction sulfonimide: are its polymorphs predictable? , 2011, Angewandte Chemie.

[68]  Predicting the crystal structure of organic molecular materials , 1996 .

[69]  Gautam R. Desiraju,et al.  On the presence of multiple molecules in the crystal asymmetric unit ( Z ′ > 1) , 2007 .

[70]  D. Matthews,et al.  Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy , 2014, Science.

[71]  G. Desiraju,et al.  Polymorphism and Pseudopolymorphism in Organic Crystals , 1999 .

[72]  J. Steed,et al.  Comment on “On the presence of multiple molecules in the crystal asymmetric unit (Z′ > 1)” by Gautam R. Desiraju, CrystEngComm, 2007, 9, 91 , 2007 .

[73]  A. Authier Early Days of X-ray Crystallography , 2013 .

[74]  G. Desiraju,et al.  On the polymorphism of aspirin. , 2007, Angewandte Chemie.

[75]  Claire S. Adjiman,et al.  Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test , 2011, Acta crystallographica. Section B, Structural science.

[76]  J. Robertson The Structure of Benzoquinone. A Quantitative X-Ray Investigation , 1935 .

[77]  T. N. Guru Row,et al.  Crystal landscape in the orcinol:4,4′-bipyridine system: synthon modularity, polymorphism and transferability of multipole charge density parameters , 2013, IUCrJ.

[78]  Thomas Lengauer,et al.  Crystal Structure Prediction based on Statistical Potentials , 1998 .

[79]  T. Sakurai On the refinement of the crystal structures of phenoquinone and monoclinic quinhydrone , 1968 .

[80]  T. C. Lewis,et al.  A third blind test of crystal structure prediction. , 2005, Acta crystallographica. Section B, Structural science.

[81]  A. Gavezzotti,et al.  Polymorphic Perversity: Crystal Structures with Many Symmetry-Independent Molecules in the Unit Cell † , 2008 .

[82]  G. Desiraju,et al.  On the polymorphism of aspirin: crystalline aspirin as intergrowths of two "polymorphic" domains. , 2007, Angewandte Chemie.

[83]  P Verwer,et al.  A test of crystal structure prediction of small organic molecules. , 2000, Acta crystallographica. Section B, Structural science.

[84]  Gautam R. Desiraju,et al.  Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .

[85]  A. Matzger,et al.  Unmasking a third polymorph of a benchmark crystal-structure-prediction compound. , 2009, Angewandte Chemie.

[86]  S. Price,et al.  Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. , 2009, Accounts of chemical research.

[87]  A. Gavezzotti,et al.  Ten years of experience in polymorph prediction: what next? , 2002 .

[88]  J. Perlstein Molecular self-assemblies : Monte Carlo predictions for the structure of the one-dimensional translation aggregate , 1992 .

[89]  J. Maddox Crystals from first principles , 1988, Nature.

[90]  A. Gavezzotti,et al.  Toward a Quantitative Description of Crystal Packing in Terms of Molecular Pairs: Application to the Hexamorphic Crystal System, 5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile† , 2005 .

[91]  Peddy Vishweshwar,et al.  Supramolecular synthon polymorphism in 2 : 1 co-crystal of 4-hydroxybenzoic acid and 2,3,5,6-tetramethylpyrazine. , 2007, Chemical communications.

[92]  J. Robertson,et al.  A new form of resorcinol. II. Thermodynamic properties in relation to structure , 1938, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[93]  Donald E. Williams,et al.  Computer Calculation of Molecular Crystal Structures , 1968, Science.

[94]  G. Voth,et al.  A solid–solid phase transition in carbon dioxide at high pressures and intermediate temperatures , 2013, Nature Communications.

[95]  Graeme M. Day,et al.  Current approaches to predicting molecular organic crystal structures , 2011 .

[96]  Thomas Lengauer,et al.  Placement of medium-sized molecular fragments into active sites of proteins , 1996, J. Comput. Aided Mol. Des..

[97]  G. Desiraju,et al.  Synthon polymorphism and pseudopolymorphism in co-crystals. The 4,4'-bipyridine-4-hydroxybenzoic acid structural landscape. , 2011, Chemical communications.

[98]  G. Beran,et al.  Crystal Polymorphism in Oxalyl Dihydrazide: Is Empirical DFT-D Accurate Enough? , 2012, Journal of chemical theory and computation.

[99]  A. Kitaygorodsky The interaction curve of non-bonded carbon and hydrogen atoms and its application , 1961 .

[100]  Beate Paulus,et al.  On the accuracy of correlation-energy expansions in terms of local increments. , 2005, The Journal of chemical physics.