Polynomial identities, indices, and duality for theN=1 superconformal modelSM(2, 4v)

We prove polynomial identities for theN=1 superconformal modelSM(2, 4v) which generalize and extend the known Fermi/Bose character identities. Our proof uses theq-trinomial coefficients of Andrews and Baxter on the bosonic side and a recently introduced very general method of producing recursion relations forq-series on the fermionic side. We use these polynomials to demonstrate a dual relation underq→q−1 betweenSM(2, 4v) andM(2v−1, 4v). We also introduce a genralization of the Witten index which is expressible in terms of the Rogers false theta functions.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  L. J. Rogers On Two Theorems of Combinatory Analysis and Some Allied Identities , 1917 .

[3]  Lucy Joan Slater,et al.  Further Identities of the Rogers‐Ramanujan Type , 1952 .

[4]  Shô Iseki,et al.  A generalization of a functional equation related to the theory of partitions , 1960 .

[5]  Basil Gordon Some continued fractions of the Rogers-Ramanujan type , 1965 .

[6]  M. Suzuki,et al.  One-Dimensional Anisotropic Heisenberg Model at Finite Temperatures , 1972 .

[7]  James Lepowsky,et al.  Lie algebraic approaches to classical partition identities , 1978 .

[8]  J. Lepowsky,et al.  The Weyl-Kac character formula and power series identities , 1978 .

[9]  D. Bressoud AN ANALYTIC GENERALIZATION OF THE ROGERS-RAMANUJAN IDENTITIES WITH INTERPRETATION , 1980 .

[10]  William H. Burge,et al.  A Three-way Correspondence Between Partitions , 1982, Eur. J. Comb..

[11]  Edward Witten,et al.  Constraints on Supersymmetry Breaking , 1982 .

[12]  D. B. Fuks,et al.  Invariant skew-symmetric differential operators on the line and Verma modules over the Virasoro algebra , 1982 .

[13]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[14]  George E. Andrews,et al.  Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities , 1984 .

[15]  J. Lepowsky,et al.  Structure of the standard modules for the affine Lie algebra A[(1)] [1] , 1985 .

[16]  Peter J. Forrester,et al.  Further exact solutions of the eight-vertex SOS model and generalizations of the Rogers-Ramanujan identities , 1985 .

[17]  Andrea Cappelli,et al.  Modular Invariant Partition Functions in Two-Dimensions , 1987 .

[18]  George E. Andrews,et al.  Lattice gas generalization of the hard hexagon model. III.q-Trinomial coefficients , 1987 .

[19]  J. Zuber,et al.  Generalized Coulomb Gas Formalism for Two-dimensional Critical Models Based on SU(2) Coset Construction , 1988 .

[20]  George E. Andrews,et al.  Euler’s ‘‘exemplum memorabile inductionis fallacis” and $q$-trinomial coefficients , 1990 .

[21]  V. Fateev,et al.  Integrable perturbations of ZN parafermion models and the O(3) sigma model , 1991 .

[22]  B. M. Fulk MATH , 1992 .

[23]  H. Ooguri,et al.  The Annihilating Ideals of Minimal Models , 1992 .

[24]  Lift of dilogarithm to partition identities , 1992, hep-th/9211120.

[25]  B. McCoy,et al.  Fermionic quasi-particle representations for characters of (G (1) ) 1 × (G (1) ) 1 /(G (1) ) 2 , 1992, hep-th/9211102.

[26]  J. Suzuki,et al.  Characters in Conformal Field Theories from Thermodynamic Bethe Ansatz , 1993 .

[27]  Fermionic sum representations for conformal field theory characters , 1993, hep-th/9301046.

[28]  FERMIONIC CHARACTER SUMS AND THE CORNER TRANSFER MATRIX , 1993, hep-th/9305114.

[29]  String Hypothesis and Characters of Coset CFTs , 1993, hep-th/9305024.

[30]  Dilogarithm identities, fusion rules and structure constants of CFTs , 1993, hep-th/9307056.

[31]  Virasoro representations on fusion graphs , 1992, hep-th/9210007.

[32]  The Sums of Rogers, Schur and Ramanujan and the Bose-Fermi correspondence in (1+1)-dimensional quantum field theory , 1993, hep-th/9304056.

[33]  Quasi-particles models for the representations of Lie algebras and geometry of flag manifold , 1993, hep-th/9308079.

[34]  Supersymmetric Analogs of the Gordon-Andrews Identities, and Related TBA Systems , 1994, hep-th/9412154.

[35]  Fermionic counting of RSOS states and Virasoro character formulas for the unitary minimal series M(v,v + 1): Exact results , 1994, hep-th/9403073.

[36]  A. Ludwig,et al.  Spinon bases, Yangian symmetry and fermionic representations of Virasoro characters in conformal field theory , 1994, hep-th/9406020.

[37]  Galin Georgiev Combinatorial constructions of modules for infinite-dimensional Lie algebras, I. Principal subspace , 1994, hep-th/9412054.

[38]  Virasoro characters from bethe equations for the critical ferromagnetic three-state potts model , 1993, hep-th/9304150.

[39]  Anatol N. Kirillov Dilogarithm identities , 1994 .

[40]  E. Melzer The many faces of a character , 1993, hep-th/9312043.

[41]  P. Pearce,et al.  Exceptional structure of the dilute A(3) model: E(8) and E(7) Rogers-Ramanujan identities , 1994, hep-th/9408136.

[42]  W. Eholzer,et al.  Fusion algebras of fermionic rational conformal field theories via a generalized Verlinde formula , 1993, hep-th/9307031.

[43]  O. Foda,et al.  POLYNOMIAL IDENTITIES OF THE ROGERS-RAMANUJAN TYPE , 1994, hep-th/9407191.

[44]  On State Counting and Characters , 1994, hep-th/9404116.

[45]  A. Schilling Multinomials and polynomial bosonic forms for the branching functions of the su(2)M x su(2)N/su(2)M+N conformal coset models , 1995, hep-th/9510168.

[46]  Lattice Models and Generalized Rogers Ramanujan Identities , 1994, hep-th/9410033.

[47]  R. Tateo New functional dilogarithm identities and sine-Gordon Y-systems , 1995 .

[48]  A. Ludwig,et al.  Spinon basis for (sl_2)_k integrable highest weight modules and new character formulas , 1995, hep-th/9504074.

[49]  J. Minahan,et al.  Recent progress in statistical mechanics and quantum field theory : Department of Physics & Astronomy, University of Southern California, 16-21 May 1994 , 1995 .

[50]  Fermionic solution of the Andrews-Baxter-Forrester model. I. Unification of TBA and CTM methods , 1995, hep-th/9501134.

[51]  A bijection which implies Melzer's polynomial identities: theχ1,1(p,p+1) case , 1995, hep-th/9501088.

[52]  A. Nakayashiki,et al.  Crystalline Spinon Basis for RSOS Models , 1995, hep-th/9505083.

[53]  A. Nakayashiki,et al.  Crystallizing the spinon basis , 1995, hep-th/9504052.

[54]  D. Gepner,et al.  Fermionic sum representations for the Virasoro characters of the unitary superconformal minimal models , 1995, hep-th/9502118.

[55]  G. Andrews Rogers-Ramanujan polynomials for modulus 6 , 1996 .

[56]  R. Tateo,et al.  INTEGRABLE PERTURBATIONS OF CFT WITH COMPLEX PARAMETER: THE M3/5 MODEL AND ITS GENERALIZATIONS , 1994, hep-th/9411085.

[57]  A-D-E polynomial and Rogers-Ramanujan identities , 1994, hep-th/9411009.

[58]  Virasoro character identities from the Andrews-Bailey construction , 1994, hep-th/9408086.