Smad Transcriptional Corepressors in TGFβ Family Signaling

[1]  E. Zackai,et al.  Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination , 2000, Nature Genetics.

[2]  J. Massagué,et al.  OAZ Uses Distinct DNA- and Protein-Binding Zinc Fingers in Separate BMP-Smad and Olf Signaling Pathways , 2000, Cell.

[3]  J. Massagué,et al.  Multiple Modes of Repression by the Smad Transcriptional Corepressor TGIF* , 1999, The Journal of Biological Chemistry.

[4]  K. Miyazono,et al.  c-Ski Acts as a Transcriptional Co-repressor in Transforming Growth Factor-β Signaling through Interaction with Smads* , 1999, The Journal of Biological Chemistry.

[5]  J. Massagué,et al.  Ubiquitin-dependent degradation of TGF-β-activated Smad2 , 1999, Nature Cell Biology.

[6]  Yan Chen,et al.  Regulation of Smad7 Promoter by Direct Association with Smad3 and Smad4* , 1999, The Journal of Biological Chemistry.

[7]  H. Lodish,et al.  Specificity in transforming growth factor beta-induced transcription of the plasminogen activator inhibitor-1 gene: interactions of promoter DNA, transcription factor muE3, and Smad proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  K. Miyazono,et al.  Interaction and Functional Cooperation of PEBP2/CBF with Smads , 1999, The Journal of Biological Chemistry.

[9]  R. Weinberg,et al.  SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor beta signaling. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  K. Luo,et al.  Negative Feedback Regulation of TGF-β Signaling by the SnoN Oncoprotein , 1999 .

[11]  R. Weinberg,et al.  Interaction of the Ski Oncoprotein with Smad3 Regulates TGF-β Signaling , 1999 .

[12]  M. Muenke,et al.  Molecular mechanisms of holoprosencephaly. , 1999, Molecular genetics and metabolism.

[13]  Qiang Zhou,et al.  The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. , 1999, Genes & development.

[14]  Jeffrey L. Wrana,et al.  A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation , 1999, Nature.

[15]  X. Cao,et al.  Smad1 Interacts with Homeobox DNA-binding Proteins in Bone Morphogenetic Protein Signaling* , 1999, The Journal of Biological Chemistry.

[16]  J. Massagué,et al.  A Smad Transcriptional Corepressor , 1999, Cell.

[17]  J. Massagué,et al.  A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. , 1999, Genes & development.

[18]  R. Nicol,et al.  Association of specific DNA binding and transcriptional repression with the transforming and myogenic activities of c-Ski. , 1999, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[19]  J. Massagué,et al.  Inhibition of transforming growth factor-β/SMAD signalling by the interferon-γ/STAT pathway , 1999, Nature.

[20]  S. Kaul,et al.  Viral Ski Inhibits Retinoblastoma Protein (Rb)-mediated Transcriptional Repression in a Dominant Negative Fashion* , 1999, The Journal of Biological Chemistry.

[21]  S. Ishii,et al.  Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. , 1999, Genes & development.

[22]  E. Lai,et al.  FAST-2 Is a Mammalian Winged-Helix Protein Which Mediates Transforming Growth Factor β Signals , 1999, Molecular and Cellular Biology.

[23]  H. Lodish,et al.  Synergistic cooperation of TFE3 and smad proteins in TGF-beta-induced transcription of the plasminogen activator inhibitor-1 gene. , 1998, Genes & development.

[24]  J. Massagué,et al.  Physical and Functional Interaction of SMADs and p300/CBP* , 1998, The Journal of Biological Chemistry.

[25]  Yigong Shi,et al.  Crystal Structure of a Smad MH1 Domain Bound to DNA Insights on DNA Binding in TGF-β Signaling , 1998, Cell.

[26]  J. Turner,et al.  Cloning and characterization of mCtBP2, a co‐repressor that associates with basic Krüppel‐like factor and other mammalian transcriptional regulators , 1998, The EMBO journal.

[27]  R. Derynck,et al.  Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription , 1998, Nature.

[28]  M. Whitman Smads and early developmental signaling by the TGFbeta superfamily. , 1998, Genes & development.

[29]  C. Heldin,et al.  Identification and Functional Characterization of a Smad Binding Element (SBE) in the JunB Promoter That Acts as a Transforming Growth Factor-β, Activin, and Bone Morphogenetic Protein-inducible Enhancer* , 1998, The Journal of Biological Chemistry.

[30]  T. Hunter,et al.  TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. , 1998, Genes & development.

[31]  R. Derynck,et al.  The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. , 1998, Genes & development.

[32]  J. Massagué,et al.  Determinants of specificity in TGF-beta signal transduction. , 1998, Genes & development.

[33]  K. Irie,et al.  The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3 , 1998, Nature.

[34]  K. Kinzler,et al.  Characterization of human FAST-1, a TGFβ and activin signal transducer , 1998 .

[35]  P. Hoodless,et al.  Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. , 1998, Molecular cell.

[36]  E. Li,et al.  Smad2 role in mesoderm formation, left–right patterning and craniofacial development , 1998, Nature.

[37]  A. Kilbey,et al.  Evi-1 ZF1 DNA binding activity and a second distinct transcriptional repressor region are both required for optimal transformation of Rat1 fibroblasts , 1998, Oncogene.

[38]  Anita B. Roberts,et al.  REGULATION OF IMMUNE RESPONSES BY TGF-β* , 1998 .

[39]  M. Muenke,et al.  Holoprosencephaly: from Homer to Hedgehog , 1998, Clinical genetics.

[40]  Yigong Shi,et al.  The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF‐β receptors , 1998, The EMBO journal.

[41]  R. Nicol,et al.  Transcriptional Repression by v-Ski and c-Ski Mediated by a Specific DNA Binding Site* , 1998, The Journal of Biological Chemistry.

[42]  J. Massagué,et al.  SMADs: mediators and regulators of TGF-β signaling , 1998 .

[43]  T. Yoneda,et al.  Smad5 and DPC4 Are Key Molecules in Mediating BMP-2-induced Osteoblastic Differentiation of the Pluripotent Mesenchymal Precursor Cell Line C2C12* , 1998, The Journal of Biological Chemistry.

[44]  J. Massagué,et al.  Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. , 1998, Genes & development.

[45]  J. Massagué TGF-beta signal transduction. , 1998, Annual review of biochemistry.

[46]  Kohei Miyazono,et al.  TGF-β signalling from cell membrane to nucleus through SMAD proteins , 1997, Nature.

[47]  J. Massagué,et al.  Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. , 1997, Genes & development.

[48]  W. Vale,et al.  Smad8 mediates the signaling of the receptor serine kinase , 1997 .

[49]  S. Elledge,et al.  Human CPR (cell cycle progression restoration) genes impart a Far- phenotype on yeast cells. , 1997, Genetics.

[50]  T R Bürglin,et al.  Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. , 1997, Nucleic acids research.

[51]  C. Heldin,et al.  Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling , 1997, Nature.

[52]  M. Kretzschmar,et al.  Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1 , 1997, Nature.

[53]  K. Miyazono,et al.  Smad6 inhibits signalling by the TGF-β superfamily , 1997, Nature.

[54]  Minoru Watanabe,et al.  Smad4 and FAST-1 in the assembly of activin-responsive factor , 1997, Nature.

[55]  Takeshi Imamura,et al.  TGF‐β receptor‐mediated signalling through Smad2, Smad3 and Smad4 , 1997 .

[56]  C. Richmond,et al.  Identification of a core functional and structural domain of the v-Ski oncoprotein responsible for both transformation and myogenesis , 1997, Oncogene.

[57]  Kirby D. Johnson,et al.  Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic , 1997, Nature.

[58]  Yigong Shi,et al.  A structural basis for mutational inactivation of the tumour suppressor Smad4 , 1997, Nature.

[59]  J. Massagué,et al.  Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4 , 1997, Nature.

[60]  J. Massagué,et al.  Mechanism of TGFβ receptor inhibition by FKBP12 , 1997, The EMBO journal.

[61]  S. Pearson-White,et al.  Proto-oncogene Sno expression, alternative isoforms and immediate early serum response. , 1997, Nucleic acids research.

[62]  J. Wrana,et al.  The MAD-Related Protein Smad7 Associates with the TGFβ Receptor and Functions as an Antagonist of TGFβ Signaling , 1997, Cell.

[63]  J. Massagué,et al.  The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. , 1997, Genes & development.

[64]  A. Kilbey,et al.  The Evi-1 proto-oncogene encodes a transcriptional repressor activity associated with transformation , 1997, Oncogene.

[65]  C. Heldin,et al.  Identification of Smad2, a Human Mad-related Protein in the Transforming Growth Factor β Signaling Pathway* , 1997, The Journal of Biological Chemistry.

[66]  P. Hoodless,et al.  MADR2 Is a Substrate of the TGFβ Receptor and Its Phosphorylation Is Required for Nuclear Accumulation and Signaling , 1996, Cell.

[67]  J. Massagué,et al.  Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways , 1996, Nature.

[68]  Xin Chen,et al.  A transcriptional partner for MAD proteins in TGF-β signalling , 1996, Nature.

[69]  R. Derynck,et al.  Receptor-associated Mad homologues synergize as effectors of the TGF-β response , 1996, Nature.

[70]  Y. Sasai,et al.  Dorsoventral Patterning in Xenopus: Inhibition of Ventral Signals by Direct Binding of Chordin to BMP-4 , 1996, Cell.

[71]  J. Massagué,et al.  A human Mad protein acting as a BMP-regulated transcriptional activator , 1996, Nature.

[72]  P. Hoodless,et al.  MADR1, a MAD-Related Protein That Functions in BMP2 Signaling Pathways , 1996, Cell.

[73]  E. Bertolino,et al.  Expression of a novel murine homeobox gene in the developing cerebellar external granular layer during its proliferation , 1996, Developmental dynamics : an official publication of the American Association of Anatomists.

[74]  Scott E. Kern,et al.  DPC4, A Candidate Tumor Suppressor Gene at Human Chromosome 18q21.1 , 1996, Science.

[75]  A. Perkins,et al.  Zinc Fingers 1–7 of EVI1 Fail to Bind to the GATA Motif by Itself but Require the Core Site GACAAGATA for Binding (*) , 1996, The Journal of Biological Chemistry.

[76]  E. Bertolino,et al.  A Novel Homeobox Protein Which Recognizes a TGT Core and Functionally Interferes with a Retinoid-responsive Motif (*) , 1995, The Journal of Biological Chemistry.

[77]  A. Ryan,et al.  Isolation and characterization of the chicken homeodomain protein AKR. , 1995, Nucleic acids research.

[78]  A. Iavarone,et al.  Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. , 1995, Genes & development.

[79]  K. Sulik,et al.  Teratogenicity of low doses of all-trans retinoic acid in presomite mouse embryos. , 1995, Teratology.

[80]  H. Moses,et al.  Transforming Growth Factor β and Cell Cycle Regulation , 1995 .

[81]  C. Heldin,et al.  Dimerization of cell surface receptors in signal transduction , 1995, Cell.

[82]  B. Riggs,et al.  TGF‐β regulation of nuclear proto‐oncogenes and TGF‐β gene expression in normal human osteoblast‐like cells , 1995 .

[83]  E. Stavnezer,et al.  A carboxyl-terminal region of the ski oncoprotein mediates homodimerization as well as heterodimerization with the related protein SnoN. , 1994, The Journal of biological chemistry.

[84]  Gregory J. Hannon,et al.  pl5INK4B is a potentia| effector of TGF-β-induced cell cycle arrest , 1994, Nature.

[85]  Jeffrey L. Wrana,et al.  Mechanism of activation of the TGF-β receptor , 1994, Nature.

[86]  F. Conlon,et al.  A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. , 1994, Development.

[87]  S. Pearson-White,et al.  SnoI, a novel alternatively spliced isoform of the ski protooncogene homolog, sno. , 1993, Nucleic acids research.

[88]  Linda Lowe,et al.  Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation , 1993, Nature.

[89]  J. Massagué,et al.  Novel activin receptors: Distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors , 1992, Cell.

[90]  S. Hughes,et al.  Activation of the c-ski oncogene by overexpression , 1991, Journal of virology.

[91]  L. Mathews,et al.  Expression cloning of an activin receptor, a predicted transmembrane serine kinase , 1991, Cell.

[92]  K. Alitalo,et al.  Immediate early gene responses of NIH 3T3 fibroblasts and NMuMG epithelial cells to TGF beta-1. , 1991, Growth factors.

[93]  N. Nomura,et al.  Requirement of protein co-factor for the DNA-binding function of the human ski proto-oncogene product. , 1990, Nucleic acids research.

[94]  C. Colmenares,et al.  The ski oncogene induces muscle differentiation in quail embryo cells , 1989, Cell.

[95]  S. Hughes,et al.  Isolation and characterization of three distinct cDNAs for the chicken c-ski gene , 1989, Molecular and cellular biology.

[96]  E. Stavnezer,et al.  The v-ski oncogene encodes a truncated set of c-ski coding exons with limited sequence and structural relatedness to v-myc , 1989, Molecular and cellular biology.

[97]  N. Nomura,et al.  Isolation of human cDNA clones of ski and the ski-related gene, sno. , 1989, Nucleic acids research.

[98]  Y. Li,et al.  Transforming Sloan-Kettering viruses generated from the cloned v-ski oncogene by in vitro and in vivo recombinations , 1986, Journal of virology.

[99]  E. Stavnezer,et al.  Unique sequence, ski, in Sloan-Kettering avian retroviruses with properties of a new cell-derived oncogene , 1986, Journal of virology.

[100]  Lammer Ej,et al.  Retinoic Acid Embryopathy , 1985 .