Multiscale modeling of acoustic wave propagation in 2D media
暂无分享,去创建一个
[1] T. Mukerji,et al. The Rock Physics Handbook: Contents , 2009 .
[2] Mrinal K. Sen,et al. Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations , 2007 .
[3] Susan E. Minkoff,et al. An a priori error analysis of operator upscaling for the acoustic wave equation , 2008 .
[4] Jeroen Tromp,et al. Acoustic, elastic and poroelastic simulations of CO2 sequestration crosswell monitoring based on spectral-element and adjoint methods , 2011 .
[5] Martin Galis,et al. 3‐D finite‐difference, finite‐element, discontinuous‐Galerkin and spectral‐element schemes analysed for their accuracy with respect to P‐wave to S‐wave speed ratio , 2011 .
[6] Yalchin Efendiev,et al. An Energy-Conserving Discontinuous Multiscale Finite Element Method for the wave equation in Heterogeneous Media , 2011, Adv. Data Sci. Adapt. Anal..
[7] Susan E. Minkoff,et al. A Matrix Analysis of Operator-Based Upscaling for the Wave Equation , 2006, SIAM J. Numer. Anal..
[8] Yalchin Efendiev,et al. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media , 2014, J. Comput. Phys..
[9] Martin Käser,et al. Non-conforming hybrid meshes for efficient 2-D wave propagation using the Discontinuous Galerkin Method , 2011 .
[10] Géza Seriani,et al. Spectral element method for acoustic wave simulation in heterogeneous media , 1994 .
[11] Eric T. Chung,et al. A-posteriori error analysis for a staggered discontinuous Galerkin discretization of the time-harmonic Maxwell's equations , 2014, Appl. Math. Comput..
[12] Susan E. Minkoff,et al. Operator Upscaling for the Acoustic Wave Equation , 2005, Multiscale Model. Simul..
[13] D. Komatitsch,et al. Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .
[14] D. Komatitsch,et al. Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .
[15] Marcus J. Grote,et al. Finite Element Heterogeneous Multiscale Method for the Wave Equation , 2011, Multiscale Model. Simul..
[16] J. Virieux. P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .
[17] T. Mukerji,et al. The Rock Physics Handbook , 1998 .
[18] Patrick Lailly,et al. Wave propagation in heterogeneous media: Effects of fine-scale heterogeneity , 2008 .
[19] Eric T. Chung,et al. Optimal Discontinuous Galerkin Methods for the Acoustic Wave Equation in Higher Dimensions , 2009, SIAM J. Numer. Anal..
[20] Richard L. Gibson,et al. Accurate generation of seismograms on fractured reservoirs , 2009 .
[21] Yalchin Efendiev,et al. Mixed Generalized Multiscale Finite Element Methods and Applications , 2014, Multiscale Model. Simul..
[22] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[23] Susan E. Minkoff,et al. A Two--Scale Solution Algorithm for the Elastic Wave Equation , 2009, SIAM J. Sci. Comput..
[24] Martin Käser,et al. Wavefield modeling in exploration seismology using the discontinuous Galerkin finite-element method on HPC infrastructure , 2010 .
[25] Mrinal K. Sen,et al. New developments in the finite-element method for seismic modeling , 2009 .
[26] Gordon Erlebacher,et al. Modeling the propagation of elastic waves using spectral elements on a cluster of 192 GPUs , 2010, Computer Science - Research and Development.
[27] William W. Symes,et al. Getting it right without knowing the answer: quality control in a large seismic modeling project , 2009 .
[28] S. Shapiro,et al. Finite-difference modeling of wave propagation on microscale: A snapshot of the work in progress , 2007 .
[29] Yalchin Efendiev,et al. Multiscale Finite Element Methods: Theory and Applications , 2009 .
[30] Martin Käser,et al. Regular versus irregular meshing for complicated models and their effect on synthetic seismograms , 2010 .
[31] Yalchin Efendiev,et al. Residual-driven online generalized multiscale finite element methods , 2015, J. Comput. Phys..
[32] Yder J. Masson,et al. Finite-difference modeling of Biot's poroelastic equations across all frequencies , 2010 .
[33] E. Rank,et al. A multiscale finite-element method , 1997 .
[34] Jean Virieux,et al. Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves , 2007, 0706.3825.
[35] Houman Owhadi,et al. Numerical homogenization of the acoustic wave equations with a continuum of scales , 2006 .
[36] Eric T. Chung,et al. Optimal Discontinuous Galerkin Methods for Wave Propagation , 2006, SIAM J. Numer. Anal..
[37] Olof Runborg,et al. Multi-scale methods for wave propagation in heterogeneous media , 2009, 0911.2638.
[38] G. Backus. Long-Wave Elastic Anisotropy Produced by Horizontal Layering , 1962 .
[39] Jean Virieux,et al. SH-wave propagation in heterogeneous media; velocity-stress finite-difference method , 1984 .
[40] Todd Arbogast,et al. Numerical Subgrid Upscaling of Two-Phase Flow in Porous Media , 2000 .