Multiscale modeling of acoustic wave propagation in 2D media

ABSTRACTConventional finite-difference methods produce accurate solutions to the acoustic and elastic wave equation for many applications, but they face significant challenges when material properties vary significantly over distances less than the grid size. This challenge is likely to occur in reservoir characterization studies, because important reservoir heterogeneity can be present on scales of several meters to ten meters. Here, we describe a new multiscale finite-element method for simulating acoustic wave propagation in heterogeneous media that addresses this problem by coupling fine- and coarse-scale grids. The wave equation is solved on a coarse grid, but it uses basis functions that are generated from the fine grid and allow the representation of the fine-scale variation of the wavefield on the coarser grid. Time stepping also takes place on the coarse grid, providing further speed gains. Another important property of the method is that the basis functions are only computed once, and time savin...

[1]  T. Mukerji,et al.  The Rock Physics Handbook: Contents , 2009 .

[2]  Mrinal K. Sen,et al.  Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations , 2007 .

[3]  Susan E. Minkoff,et al.  An a priori error analysis of operator upscaling for the acoustic wave equation , 2008 .

[4]  Jeroen Tromp,et al.  Acoustic, elastic and poroelastic simulations of CO2 sequestration crosswell monitoring based on spectral-element and adjoint methods , 2011 .

[5]  Martin Galis,et al.  3‐D finite‐difference, finite‐element, discontinuous‐Galerkin and spectral‐element schemes analysed for their accuracy with respect to P‐wave to S‐wave speed ratio , 2011 .

[6]  Yalchin Efendiev,et al.  An Energy-Conserving Discontinuous Multiscale Finite Element Method for the wave equation in Heterogeneous Media , 2011, Adv. Data Sci. Adapt. Anal..

[7]  Susan E. Minkoff,et al.  A Matrix Analysis of Operator-Based Upscaling for the Wave Equation , 2006, SIAM J. Numer. Anal..

[8]  Yalchin Efendiev,et al.  Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media , 2014, J. Comput. Phys..

[9]  Martin Käser,et al.  Non-conforming hybrid meshes for efficient 2-D wave propagation using the Discontinuous Galerkin Method , 2011 .

[10]  Géza Seriani,et al.  Spectral element method for acoustic wave simulation in heterogeneous media , 1994 .

[11]  Eric T. Chung,et al.  A-posteriori error analysis for a staggered discontinuous Galerkin discretization of the time-harmonic Maxwell's equations , 2014, Appl. Math. Comput..

[12]  Susan E. Minkoff,et al.  Operator Upscaling for the Acoustic Wave Equation , 2005, Multiscale Model. Simul..

[13]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[14]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[15]  Marcus J. Grote,et al.  Finite Element Heterogeneous Multiscale Method for the Wave Equation , 2011, Multiscale Model. Simul..

[16]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[17]  T. Mukerji,et al.  The Rock Physics Handbook , 1998 .

[18]  Patrick Lailly,et al.  Wave propagation in heterogeneous media: Effects of fine-scale heterogeneity , 2008 .

[19]  Eric T. Chung,et al.  Optimal Discontinuous Galerkin Methods for the Acoustic Wave Equation in Higher Dimensions , 2009, SIAM J. Numer. Anal..

[20]  Richard L. Gibson,et al.  Accurate generation of seismograms on fractured reservoirs , 2009 .

[21]  Yalchin Efendiev,et al.  Mixed Generalized Multiscale Finite Element Methods and Applications , 2014, Multiscale Model. Simul..

[22]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[23]  Susan E. Minkoff,et al.  A Two--Scale Solution Algorithm for the Elastic Wave Equation , 2009, SIAM J. Sci. Comput..

[24]  Martin Käser,et al.  Wavefield modeling in exploration seismology using the discontinuous Galerkin finite-element method on HPC infrastructure , 2010 .

[25]  Mrinal K. Sen,et al.  New developments in the finite-element method for seismic modeling , 2009 .

[26]  Gordon Erlebacher,et al.  Modeling the propagation of elastic waves using spectral elements on a cluster of 192 GPUs , 2010, Computer Science - Research and Development.

[27]  William W. Symes,et al.  Getting it right without knowing the answer: quality control in a large seismic modeling project , 2009 .

[28]  S. Shapiro,et al.  Finite-difference modeling of wave propagation on microscale: A snapshot of the work in progress , 2007 .

[29]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[30]  Martin Käser,et al.  Regular versus irregular meshing for complicated models and their effect on synthetic seismograms , 2010 .

[31]  Yalchin Efendiev,et al.  Residual-driven online generalized multiscale finite element methods , 2015, J. Comput. Phys..

[32]  Yder J. Masson,et al.  Finite-difference modeling of Biot's poroelastic equations across all frequencies , 2010 .

[33]  E. Rank,et al.  A multiscale finite-element method , 1997 .

[34]  Jean Virieux,et al.  Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves , 2007, 0706.3825.

[35]  Houman Owhadi,et al.  Numerical homogenization of the acoustic wave equations with a continuum of scales , 2006 .

[36]  Eric T. Chung,et al.  Optimal Discontinuous Galerkin Methods for Wave Propagation , 2006, SIAM J. Numer. Anal..

[37]  Olof Runborg,et al.  Multi-scale methods for wave propagation in heterogeneous media , 2009, 0911.2638.

[38]  G. Backus Long-Wave Elastic Anisotropy Produced by Horizontal Layering , 1962 .

[39]  Jean Virieux,et al.  SH-wave propagation in heterogeneous media; velocity-stress finite-difference method , 1984 .

[40]  Todd Arbogast,et al.  Numerical Subgrid Upscaling of Two-Phase Flow in Porous Media , 2000 .