Atangana–Baleanu fractional model for the flow of Jeffrey nanofluid with diffusion-thermo effects: applications in engine oil

[1]  Wondemu Bogale Teseme Review on the Manufacturing of Biodegradable Plastic Packaging Film from Root and Tuber Starches , 2020 .

[2]  D. Baleanu,et al.  System of fractional differential algebraic equations with applications , 2019, Chaos, Solitons & Fractals.

[3]  Dumitru Baleanu,et al.  On fractional calculus with general analytic kernels , 2019, Appl. Math. Comput..

[4]  Dumitru Baleanu,et al.  New aspects of fractional Biswas–Milovic model with Mittag-Leffler law , 2019, Mathematical Modelling of Natural Phenomena.

[5]  D. Baleanu,et al.  Collocation methods for fractional differential equations involving non-singular kernel , 2018, Chaos, Solitons & Fractals.

[6]  Ilyas Khan,et al.  Effects of Different Shaped Nanoparticles on the Performance of Engine-Oil and Kerosene-Oil: A generalized Brinkman-Type Fluid model with Non-Singular Kernel , 2018, Scientific Reports.

[7]  Fairouz Tchier,et al.  An Efficient Computational Technique for Fractal Vehicular Traffic Flow , 2018, Entropy.

[8]  Dumitru Baleanu,et al.  On some new properties of fractional derivatives with Mittag-Leffler kernel , 2017, Commun. Nonlinear Sci. Numer. Simul..

[9]  Ilyas Khan,et al.  Exact solutions for free convection flow of generalized Jeffrey fluid: A Caputo-Fabrizio fractional model , 2017, Alexandria Engineering Journal.

[10]  Devendra Kumar,et al.  A fractional epidemiological model for computer viruses pertaining to a new fractional derivative , 2018, Appl. Math. Comput..

[11]  I. Khan,et al.  Magnetohydrodynamic flow of brinkman-type engine oil based MoS2-nanofluid in a rotating disk with hall effect , 2017 .

[12]  Daniel J. Arrigo,et al.  An Introduction to Partial Differential Equations , 2017, An Introduction to Partial Differential Equations.

[13]  I. Pop,et al.  Axisymmetric mixed convective stagnation-point flow of a nanofluid over a vertical permeable cylinder by Tiwari-Das nanofluid model , 2017 .

[14]  Ilyas Khan,et al.  Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model , 2017 .

[15]  Ilyas Khan,et al.  A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid , 2017 .

[16]  I. Khan,et al.  A modern approach of Caputo–Fabrizio time-fractional derivative to MHD free convection flow of generalized second-grade fluid in a porous medium , 2018, Neural Computing and Applications.

[17]  Ilyas Khan,et al.  Application of Caputo-Fabrizio derivatives to MHD free convection flow of generalized Walters’-B fluid model , 2016 .

[18]  Ilyas Khan,et al.  The impact silver nanoparticles on MHD free convection flow of Jeffrey fluid over an oscillating vertical plate embedded in a porous medium , 2016 .

[19]  R. Raju,et al.  Thermal diffusion and diffusion thermo effects on unsteady MHD fluid flow past a moving vertical plate embedded in porous medium in the presence of Hall current and rotating system , 2016 .

[20]  Ilknur Koca,et al.  Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order , 2016 .

[21]  Ilyas Khan,et al.  Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo–Fabrizio derivatives , 2016 .

[22]  A. Atangana,et al.  New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model , 2016, 1602.03408.

[23]  Rahmat Ellahi,et al.  Simultaneous effects of MHD and partial slip on peristaltic flow of Jeffery fluid in a rectangular duct , 2015 .

[24]  Zulfiqar Ali Zaidi,et al.  On heat and mass transfer analysis for the flow of a nanofluid between rotating parallel plates , 2015 .

[25]  M. Caputo,et al.  A new Definition of Fractional Derivative without Singular Kernel , 2015 .

[26]  P. Loganathan,et al.  RADIATION EFFECTS ON AN UNSTEADY NATURAL CONVECTIVE FLOW OF A NANOFLUID PAST AN INFINITE VERTICAL PLATE , 2013 .

[27]  Mustafa Turkyilmazoglu,et al.  Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid , 2013 .

[28]  Tasawar Hayat,et al.  Radiative flow of Jeffery fluid in a porous medium with power law heat flux and heat source , 2012 .

[29]  Tiegang Fang,et al.  Sakiadis flow with nonlinear Rosseland thermal radiation , 2012 .

[30]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[31]  T. Hayat,et al.  Influence of Thermal Radiation on the Unsteady Mixed Convection Flow of a Jeffrey Fluid over a Stretching Sheet , 2010, Zeitschrift für Naturforschung A.

[32]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[33]  K. Parekh,et al.  Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid , 2010 .

[34]  S. Kakaç,et al.  Review of convective heat transfer enhancement with nanofluids , 2009 .

[35]  Hukum Singh,et al.  Convective flow past an accelerated porous plate in rotating system in presence of magnetic field , 2009 .

[36]  R. P. Chhabra,et al.  Non-Newtonian Flow and Applied Rheology: Engineering Applications , 2008 .

[37]  R. Tiwari,et al.  HEAT TRANSFER AUGMENTATION IN A TWO-SIDED LID-DRIVEN DIFFERENTIALLY HEATED SQUARE CAVITY UTILIZING NANOFLUIDS , 2007 .

[38]  R. Sankara,et al.  Introduction to Partial, Differential Equations , 2006 .

[39]  Md. Abdul Maleque,et al.  Local similarity solutions for unsteady MHD free convection and mass transfer flow past an impulsively started vertical porous plate with Dufour and Soret effects , 2005 .

[40]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[41]  E. Blums Heat and mass transfer phenomena , 2002 .

[42]  Mingyu Xu,et al.  The impulsive motion of flat plate in a generalized second grade fluid , 2002 .

[43]  E. Williams,et al.  Thermal-diffusion and diffusion-thermo effects on mixed free-forced convective and mass transfer boundary layer flow with temperature dependent viscosity , 1995 .

[44]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[45]  William M. Worek,et al.  Diffusion-thermo and thermal-diffusion effects in transient and steady natural convection from a vertical surface , 1992 .

[46]  L. Jehring,et al.  Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-Uniform Gases. 3rd edition. Cambridge etc., Cambridge University Press 1990. XXIV, 422 pp., £ 19.50 P/b. ISBN 0-521-40844-X , 1992 .

[47]  A. Bejan,et al.  Convection in Porous Media , 1992 .

[48]  R. Jana,et al.  Unsteady hydromagnetic couette flow in a rotating system , 1982 .

[49]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[50]  B. Ross,et al.  The development of fractional calculus 1695–1900 , 1977 .

[51]  D. Gray,et al.  The validity of the boussinesq approximation for liquids and gases , 1976 .

[52]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[53]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[54]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.