Polytope codes against adversaries in networks

Network coding is studied when an unknown subset of nodes in the network is controlled by an adversary. To solve this problem, a new class of codes called Polytope Codes is introduced. Polytope Codes are linear codes operating over bounded polytopes in real vector fields. The polytope structure creates additional complexity, but it induces properties on marginal distributions of code vectors so that validities of codewords can be checked by internal nodes of the network. It is shown that a cut-set bound for a class planar networks can be achieved using Polytope Codes. It is also shown that this cut-set bound is not always tight, and a tighter bound is given for an example network.

[1]  Imre Csiszár,et al.  The capacity of the arbitrarily varying channel revisited: Positivity, constraints , 1988, IEEE Trans. Inf. Theory.

[2]  Ning Cai,et al.  Network Error Correction, I: Basic Concepts and Upper Bounds , 2006, Commun. Inf. Syst..

[3]  Michael Langberg,et al.  The encoding complexity of network coding , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[4]  Tracey Ho,et al.  Byzantine modification detection in multicast networks using randomized network coding , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[5]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[6]  R. Yeung,et al.  NETWORK ERROR CORRECTION , PART I : BASIC CONCEPTS AND UPPER BOUNDS , 2006 .

[7]  Frank Harary,et al.  Graph Theory , 2016 .

[8]  Richard C. Singleton,et al.  Maximum distance q -nary codes , 1964, IEEE Trans. Inf. Theory.

[9]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[10]  Lihua Song,et al.  Zero-error network coding for acyclic network , 2003, IEEE Trans. Inf. Theory.

[11]  Robert D. Kleinberg,et al.  On the capacity of information networks , 2006, IEEE Transactions on Information Theory.

[12]  R. Yeung,et al.  NETWORK ERROR CORRECTION, PART II: LOWER BOUNDS , 2006 .

[13]  Tracey Ho,et al.  Network Error Correction With Unequal Link Capacities , 2010, IEEE Transactions on Information Theory.

[14]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[15]  Tracey Ho,et al.  Resilient network coding in the presence of Byzantine adversaries , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[16]  Tracey Ho,et al.  New results on network error correction: Capacities and upper bounds , 2010, 2010 Information Theory and Applications Workshop (ITA).

[17]  Muriel Médard,et al.  An algebraic watchdog for wireless network coding , 2009, 2009 IEEE International Symposium on Information Theory.

[18]  Danny Dolev,et al.  The Byzantine Generals Strike Again , 1981, J. Algorithms.

[19]  Lang Tong,et al.  Polytope codes against adversaries in networks , 2010, ISIT.

[20]  Lang Tong,et al.  Nonlinear network coding is necessary to combat general Byzantine attacks , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[21]  Randall Dougherty,et al.  Networks, Matroids, and Non-Shannon Information Inequalities , 2007, IEEE Transactions on Information Theory.

[22]  Leslie Lamport,et al.  The Byzantine Generals Problem , 1982, TOPL.

[23]  Nitin H. Vaidya,et al.  When Watchdog Meets Coding , 2009, 2010 Proceedings IEEE INFOCOM.