Predicting plant available phosphorus using infrared spectroscopy with consideration for future mobile sensing applications in precision farming

[1]  Abdul Mounem Mouazen,et al.  On-line vis-NIR spectroscopy prediction of soil organic carbon using machine learning , 2019, Soil and Tillage Research.

[2]  D. Laird,et al.  Development of field mobile soil nitrate sensor technology to facilitate precision fertilizer management , 2019, Precision Agriculture.

[3]  T. Müller,et al.  Sensitivity of Three Phosphate Extraction Methods to the Application of Phosphate Species Differing in Immediate Plant Availability , 2019, Agronomy.

[4]  P. Leinweber,et al.  Infrared spectroscopic characterization of phosphate binding at the goethite-water interface. , 2018, Physical chemistry chemical physics : PCCP.

[5]  D. M. Queiroz,et al.  Determination of chemical soil properties using diffuse reflectance and ion-exchange resins , 2018, Precision Agriculture.

[6]  Y. Ge,et al.  Predicting Physical and Chemical Properties of US Soils with a Mid-Infrared Reflectance Spectral Library , 2018 .

[7]  Mike J. McLaughlin,et al.  Evaluation of the performance of portable visible-infrared instruments for the prediction of soil properties , 2017 .

[8]  Wulf Amelung,et al.  Proximal gamma-ray spectrometry for site-independent in situ prediction of soil texture on ten heterogeneous fields in Germany using support vector machines , 2017 .

[9]  R. V. Rossel,et al.  Assessment of soil properties in situ using a prototype portable MIR spectrometer in two agricultural fields , 2016 .

[10]  W. Amelung,et al.  Proximal field Vis-NIR spectroscopy of soil organic carbon: A solution to clear obstacles related to vegetation and straw cover , 2016 .

[11]  Tatianna M. Lozier Potential and Observed Release of Phosphorus from Crop Residue and Cover Crops Over the Non-growing Season in a Cool Temperate Region , 2016 .

[12]  Robert Peticzka,et al.  A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe , 2016 .

[13]  Gaëtan F. Tremblay,et al.  Visible near infrared reflectance spectroscopy to predict soil phosphorus pools in chernozems of Saskatchewan, Canada , 2016 .

[14]  S. Delin Fertilizer value of phosphorus in different residues , 2016 .

[15]  R. Bol,et al.  Innovative methods in soil phosphorus research: A review , 2015, Journal of plant nutrition and soil science = Zeitschrift fur Pflanzenernahrung und Bodenkunde.

[16]  W. Amelung,et al.  Sensing of Soil Organic Carbon Using Visible and Near‐Infrared Spectroscopy at Variable Moisture and Surface Roughness , 2014 .

[17]  J. M. Soriano-Disla,et al.  The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties , 2014 .

[18]  A. Gholizadeh,et al.  Visible, Near-Infrared, and Mid-Infrared Spectroscopy Applications for Soil Assessment with Emphasis on Soil Organic Matter Content and Quality: State-of-the-Art and Key Issues , 2013, Applied spectroscopy.

[19]  Giorgio Provolo,et al.  An overview of fertilizer‐P recommendations in Europe: soil testing, calibration and fertilizer recommendations , 2012 .

[20]  Gaëtan F. Tremblay,et al.  Predicting Soil Phosphorus‐Related Properties Using Near‐Infrared Reflectance Spectroscopy , 2012 .

[21]  R. G. Evans,et al.  Performance assessment of the cellulose absorption index method for estimating crop residue cover , 2012, Journal of Soil and Water Conservation.

[22]  Lutz Weihermüller,et al.  Sample preparation and selection for qualitative and quantitative analyses of soil organic carbon with mid‐infrared reflectance spectroscopy , 2011 .

[23]  A. McBratney,et al.  Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – Critical review and research perspectives , 2011 .

[24]  P. Schulze Lammers,et al.  Map-based investigation of soil physical conditions and crop yield using diverse sensor techniques , 2011 .

[25]  A. McBratney,et al.  Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy , 2010 .

[26]  S. Schubert,et al.  Organic soil phosphorus considerably contributes to plant nutrition but is neglected by routine soil-testing methods , 2010 .

[27]  R. V. Rossel,et al.  Using data mining to model and interpret soil diffuse reflectance spectra. , 2010 .

[28]  Robin Gebbers,et al.  Precision Agriculture and Food Security , 2010, Science.

[29]  Philippe Lagacherie,et al.  Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements , 2008 .

[30]  J. Franke,et al.  Soil heterogeneity at the field scale: a challenge for precision crop protection , 2008, Precision Agriculture.

[31]  Stefan Pätzold,et al.  Spatial heterogeneity of soil properties and its mapping with apparent electrical conductivity , 2008 .

[32]  Raphael A. Viscarra Rossel,et al.  ParLeS: Software for chemometric analysis of spectroscopic data , 2008 .

[33]  A. Astover,et al.  Agriculture as a source of phosphorus causing eutrophication in Central and Eastern Europe , 2007 .

[34]  H. Ramon,et al.  On-line measurement of some selected soil properties using a VIS–NIR sensor , 2007 .

[35]  M. Kaiser,et al.  Stability and composition of different soluble soil organic matter fractions-evidence from δ13C and FTIR signatures , 2005 .

[36]  E. Gehrt Nord‐ und mitteldeutsche Lössbörden und Sandlössgebiete , 2004 .

[37]  C. Hurburgh,et al.  Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties , 2001 .

[38]  Ji‐Hyung Park,et al.  Controls on the dynamics of dissolved organic matter in soils: a review. , 2000 .

[39]  C. Daughtry,et al.  Plant Litter and Soil Reflectance , 2000 .

[40]  Roger Sylvester-Bradley,et al.  An analysis of the potential of precision farming in Northern Europe , 1999 .

[41]  Abdul Mounem Mouazen,et al.  On-line visible and near infrared spectroscopy for in-field phosphorous management , 2016 .

[42]  W. Amelung,et al.  Towards on-the-go field assessment of soil organic carbon using Vis–NIR diffuse reflectance spectroscopy: Developing and testing a novel tractor-driven measuring chamber , 2015 .

[43]  H. S. Mahmood,et al.  Sensing soil properties in the laboratory, in situ, and on-Line: A review , 2012 .

[44]  R. V. Rossel,et al.  Visible and near infrared spectroscopy in soil science , 2010 .

[45]  H. Schüller Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates in Böden , 1969 .