Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing
暂无分享,去创建一个
[1] H. Nishimori. Statistical Physics of Spin Glasses and Information Processing , 2001 .
[2] Toshiyuki Tanaka,et al. A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors , 2002, IEEE Trans. Inf. Theory.
[3] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[4] Martin J. Wainwright,et al. Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$ -Constrained Quadratic Programming (Lasso) , 2009, IEEE Transactions on Information Theory.
[5] S. Edwards,et al. Theory of spin glasses , 1975 .
[6] D. Donoho,et al. Counting faces of randomly-projected polytopes when the projection radically lowers dimension , 2006, math/0607364.
[7] Ralf R. Müller,et al. Channel capacity and minimum probability of error in large dual antenna array systems with binary modulation , 2003, IEEE Trans. Signal Process..
[8] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[9] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[10] Joel A. Tropp,et al. Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.
[11] Balas K. Natarajan,et al. Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..
[12] Michael Elad,et al. Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.
[13] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[14] Joel A. Tropp,et al. Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.
[15] M. Talagrand,et al. Spin Glasses: A Challenge for Mathematicians , 2003 .
[16] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[17] Andrea Montanari,et al. Analysis of Belief Propagation for Non-Linear Problems: The Example of CDMA (or: How to Prove Tanaka's Formula) , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.
[18] Sergio Verdú,et al. Randomly spread CDMA: asymptotics via statistical physics , 2005, IEEE Transactions on Information Theory.