CFTR Modulators Restore Acidification of Autophago-Lysosomes and Bacterial Clearance in Cystic Fibrosis Macrophages

Cystic fibrosis (CF) human and mouse macrophages are defective in their ability to clear bacteria such as Burkholderia cenocepacia. The autophagy process in CF (F508del) macrophages is halted, and the underlying mechanism remains unclear. Furthermore, the role of CFTR in maintaining the acidification of endosomal and lysosomal compartments in CF cells has been a subject of debate. Using 3D reconstruction of z-stack confocal images, we show that CFTR is recruited to LC3-labeled autophagosomes harboring B. cenocepacia. Using several complementary approaches, we report that CF macrophages display defective lysosomal acidification and degradative function for cargos destined to autophagosomes, whereas non-autophagosomal cargos are effectively degraded within acidic compartments. Notably, treatment of CF macrophages with CFTR modulators (tezacaftor/ivacaftor) improved the autophagy flux, lysosomal acidification and function, and bacterial clearance. In addition, CFTR modulators improved CFTR function as demonstrated by patch-clamp. In conclusion, CFTR regulates the acidification of a specific subset of lysosomes that specifically fuse with autophagosomes. Therefore, our study describes a new biological location and function for CFTR in autophago-lysosomes and clarifies the long-standing discrepancies in the field.

[1]  Haitao Wen,et al.  Gasdermin D restricts Burkholderia cenocepacia infection in vitro and in vivo , 2021, Scientific reports.

[2]  L. Szulc-Dąbrowska,et al.  Cathepsins in Bacteria-Macrophage Interaction: Defenders or Victims of Circumstance? , 2020, Frontiers in Cellular and Infection Microbiology.

[3]  G. Lukács,et al.  Allosteric folding correction of F508del and rare CFTR mutants by elexacaftor-tezacaftor-ivacaftor (Trikafta) combination , 2020, JCI insight.

[4]  M. Valvano,et al.  Macrophage dysfunction in cystic fibrosis: Nature or nurture? , 2020, Journal of leukocyte biology.

[5]  C. Picco,et al.  Correctors modify the bicarbonate permeability of F508del-CFTR , 2020, Scientific Reports.

[6]  Michelle Condren,et al.  Elexacaftor-Tezacaftor-Ivacaftor: The First Triple-Combination Cystic Fibrosis Transmembrane Conductance Regulator Modulating Therapy. , 2020, The journal of pediatric pharmacology and therapeutics : JPPT : the official journal of PPAG.

[7]  N. Mizushima,et al.  Lysosome biology in autophagy , 2020, Cell Discovery.

[8]  E. Acosta,et al.  Variable cellular ivacaftor concentrations in people with cystic fibrosis on modulator therapy. , 2020, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[9]  L. Hoffman,et al.  The impact of CFTR modulator therapies on CF airway microbiology. , 2020, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[10]  C. Campbell,et al.  Human cystic fibrosis monocyte derived macrophages display no defect in acidification of phagolysosomes when measured by optical nanosensors. , 2020, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[11]  C. Teneback,et al.  Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial , 2019, The Lancet.

[12]  A. Amer,et al.  Caspase‐11 counteracts mitochondrial ROS‐mediated clearance of Staphylococcus aureus in macrophages , 2019, EMBO reports.

[13]  J. Clancy,et al.  Clinically-approved CFTR modulators rescue Nrf2 dysfunction in cystic fibrosis airway epithelia. , 2019, The Journal of clinical investigation.

[14]  R. Bundschuh,et al.  Methylomic correlates of autophagy activity in cystic fibrosis. , 2019, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[15]  D. Sheppard,et al.  Differential thermostability and response to cystic fibrosis transmembrane conductance regulator potentiators of human and mouse F508del-CFTR , 2019, American journal of physiology. Lung cellular and molecular physiology.

[16]  M. Provinciali,et al.  Is cellular senescence involved in cystic fibrosis? , 2019, Respiratory Research.

[17]  J. Wallenburg,et al.  CFTR modulator theratyping: Current status, gaps and future directions. , 2019, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[18]  B. Kopp,et al.  Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have differential effects on cystic fibrosis macrophage function , 2018, Scientific Reports.

[19]  A. Amer,et al.  CASP4/caspase-11 promotes autophagosome formation in response to bacterial infection , 2018, Autophagy.

[20]  D. Klionsky,et al.  Cargo recognition and degradation by selective autophagy , 2018, Nature Cell Biology.

[21]  S. Tooze,et al.  Autophagy pathway: Cellular and molecular mechanisms , 2018, Autophagy.

[22]  N. Parinandi,et al.  The expression of Mirc1/Mir17-92 cluster in sputum samples correlates with pulmonary exacerbations in cystic fibrosis patients. , 2017, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[23]  P. Saftig,et al.  Vacuolar ATPase in phago(lyso)some biology. , 2017, International journal of medical microbiology : IJMM.

[24]  T. Reinheckel,et al.  Cathepsin D regulates cathepsin B activation and disease severity predominantly in inflammatory cells during experimental pancreatitis , 2017, The Journal of Biological Chemistry.

[25]  M. Domaratzki,et al.  Comparative analysis of the Burkholderia cenocepacia K56-2 essential genome reveals cell envelope functions that are uniquely required for survival in species of the genus Burkholderia , 2017, Microbial genomics.

[26]  R. Schreiber,et al.  Bicarbonate in cystic fibrosis. , 2017, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[27]  S. Muallem,et al.  Correction of Ductal CFTR Activity Rescues Acinar Cell and Pancreatic and Salivary Gland Functions in Mouse Models of Autoimmune Disease , 2017 .

[28]  N. Mizushima,et al.  Monitoring and Measuring Autophagy , 2017, International journal of molecular sciences.

[29]  L. Chiarelli,et al.  Burkholderia cenocepacia Infections in Cystic Fibrosis Patients: Drug Resistance and Therapeutic Approaches , 2017, Front. Microbiol..

[30]  P. Del Porto,et al.  The impact of impaired macrophage functions in cystic fibrosis disease progression. , 2017, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[31]  L. Hoffman,et al.  Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections , 2017, American journal of respiratory and critical care medicine.

[32]  Neel R Nabar,et al.  Autophagy and inflammasomes , 2017, Molecular immunology.

[33]  E. Gulbins,et al.  Staphylococcus aureus Survives in Cystic Fibrosis Macrophages, Forming a Reservoir for Chronic Pneumonia , 2017, Infection and Immunity.

[34]  L. Frost,et al.  The Use of DQ-BSA to Monitor the Turnover of Autophagy-Associated Cargo. , 2017, Methods in enzymology.

[35]  E. Ingenito,et al.  Tezacaftor–Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del , 2017, The New England journal of medicine.

[36]  Ben Birkman,et al.  The Cystic Fibrosis Foundation , 2017 .

[37]  C. Marsh,et al.  Elevated Mirc1/Mir17-92 cluster expression negatively regulates autophagy and CFTR (cystic fibrosis transmembrane conductance regulator) function in CF macrophages , 2016, Autophagy.

[38]  H. Senderowitz,et al.  Potentiators exert distinct effects on human, murine, and Xenopus CFTR. , 2016, American journal of physiology. Lung cellular and molecular physiology.

[39]  E. Bruscia,et al.  Cystic Fibrosis Lung Immunity: The Role of the Macrophage , 2016, Journal of Innate Immunity.

[40]  J. Weinberg,et al.  The role of glycine in regulated cell death , 2016, Cellular and Molecular Life Sciences.

[41]  David K. Meyerholz,et al.  Airway acidification initiates host defense abnormalities in cystic fibrosis mice , 2016, Science.

[42]  A. Cherry,et al.  The Spectrum of CFTR Variants in Nonwhite Cystic Fibrosis Patients: Implications for Molecular Diagnostic Testing. , 2016, The Journal of molecular diagnostics : JMD.

[43]  C. Castellani,et al.  Cystic fibrosis: a clinical view , 2016, Cellular and Molecular Life Sciences.

[44]  W. O'Neal,et al.  X-Box-Binding Protein 1 and Innate Immune Responses of Human Cystic Fibrosis Alveolar Macrophages. , 2015, American journal of respiratory and critical care medicine.

[45]  N. McCarty,et al.  Murine and human CFTR exhibit different sensitivities to CFTR potentiators. , 2015, American journal of physiology. Lung cellular and molecular physiology.

[46]  L. Gregory,et al.  Pulmonary macrophages: key players in the innate defence of the airways , 2015, Thorax.

[47]  T. P. Neufeld,et al.  Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion , 2015, Autophagy.

[48]  A. Amer,et al.  IFN-γ Stimulates Autophagy-Mediated Clearance of Burkholderia cenocepacia in Human Cystic Fibrosis Macrophages , 2014, PloS one.

[49]  J. Kehrl,et al.  Autophagy in Macrophages: Impacting Inflammation and Bacterial Infection , 2014, Scientifica.

[50]  I. Fraser,et al.  Burkholderia cenocepacia J2315 escapes to the cytosol and actively subverts autophagy in human macrophages , 2014, Cellular microbiology.

[51]  Katarina Kågedal,et al.  The lysosome: from waste bag to potential therapeutic target. , 2013, Journal of molecular cell biology.

[52]  M. Capecchi,et al.  A Mouse Model for the AF 508 Allele of Cystic Fibrosis , 2013 .

[53]  M. Valvano,et al.  Depletion of the Ubiquitin-binding Adaptor Molecule SQSTM1/p62 from Macrophages Harboring cftr ΔF508 Mutation Improves the Delivery of Burkholderia cenocepacia to the Autophagic Machinery* , 2012, The Journal of Biological Chemistry.

[54]  M. Drumm,et al.  Absence of the cystic fibrosis transmembrane regulator (Cftr) from myeloid‐derived cells slows resolution of inflammation and infection , 2012, Journal of leukocyte biology.

[55]  A. Luini,et al.  Targeting autophagy as a novel strategy for facilitating the therapeutic action of potentiators on ΔF508 cystic fibrosis transmembrane conductance regulator , 2012, Autophagy.

[56]  A. Laties,et al.  Cystic fibrosis transmembrane conductance regulator contributes to reacidification of alkalinized lysosomes in RPE cells. , 2012, American journal of physiology. Cell physiology.

[57]  Robert Clarke,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy , 2012 .

[58]  T. Lamark,et al.  Aggrephagy: Selective Disposal of Protein Aggregates by Macroautophagy , 2012, International journal of cell biology.

[59]  A S Verkman,et al.  CFTR: folding, misfolding and correcting the ΔF508 conformational defect. , 2012, Trends in molecular medicine.

[60]  Binjie Zhang,et al.  Autophagy plays an essential role in the clearance of Pseudomonas aeruginosa by alveolar macrophages , 2012, Journal of Cell Science.

[61]  Olga Vasiljeva,et al.  Cysteine cathepsins: From structure, function and regulation to new frontiers , 2011, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics.

[62]  M. Valvano,et al.  Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis , 2011, Autophagy.

[63]  M. Buffelli,et al.  Defective CFTR Expression and Function Are Detectable in Blood Monocytes: Development of a New Blood Test for Cystic Fibrosis , 2011, PloS one.

[64]  R. Medzhitov,et al.  Abnormal Trafficking and Degradation of TLR4 Underlie the Elevated Inflammatory Response in Cystic Fibrosis , 2011, The Journal of Immunology.

[65]  F. Venuta,et al.  Dysfunctional CFTR Alters the Bactericidal Activity of Human Macrophages against Pseudomonas aeruginosa , 2011, PloS one.

[66]  David J. Chen,et al.  Unrepaired clustered DNA lesions induce chromosome breakage in human cells , 2011, Proceedings of the National Academy of Sciences.

[67]  A. Ballabio,et al.  Cystic fibrosis: A disorder with defective autophagy , 2011, Autophagy.

[68]  M. Demirci Comprehensive Clinical Nephrology 3rd Edition , 2011 .

[69]  A. Ballabio,et al.  Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition , 2010, Nature Cell Biology.

[70]  T. Yoshimori,et al.  The origin of the autophagosomal membrane , 2010, Nature Cell Biology.

[71]  S. Grinstein,et al.  A cation counterflux supports lysosomal acidification , 2010, The Journal of cell biology.

[72]  E. Gulbins,et al.  Alterations in Ceramide Concentration and pH Determine the Release of Reactive Oxygen Species by Cftr-Deficient Macrophages on Infection , 2010, The Journal of Immunology.

[73]  Sandra Barth,et al.  Autophagy: cellular and molecular mechanisms , 2010, The Journal of pathology.

[74]  M. Valvano,et al.  Construction of Aminoglycoside-Sensitive Burkholderia cenocepacia Strains for Use in Studies of Intracellular Bacteria with the Gentamicin Protection Assay , 2010, Applied and Environmental Microbiology.

[75]  V. Bindokas,et al.  Disease-causing Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator Determine the Functional Responses of Alveolar Macrophages* , 2009, The Journal of Biological Chemistry.

[76]  D. Radzioch,et al.  Revisiting the role of cystic fibrosis transmembrane conductance regulator and counterion permeability in the pH regulation of endocytic organelles. , 2009, Molecular biology of the cell.

[77]  M. Wewers,et al.  Pyrin Critical to Macrophage IL-1β Response to Francisella Challenge1 , 2009, The Journal of Immunology.

[78]  M. Gadjeva,et al.  Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa. , 2009, American journal of physiology. Cell physiology.

[79]  E. Bruscia,et al.  Macrophages directly contribute to the exaggerated inflammatory response in cystic fibrosis transmembrane conductance regulator-/- mice. , 2009, American journal of respiratory cell and molecular biology.

[80]  Marjorie E. Adams,et al.  Targeting , 2019, Systems Engineering for Ethical Autonomous Systems.

[81]  M. Valvano,et al.  Burkholderia cenocepacia-induced delay of acidification and phagolysosomal fusion in cystic fibrosis transmembrane conductance regulator (CFTR)-defective macrophages. , 2008, Microbiology.

[82]  C. Hodges,et al.  Generation of a conditional null allele for Cftr in mice , 2008, Genesis.

[83]  P. Quinton Cystic fibrosis: impaired bicarbonate secretion and mucoviscidosis , 2008, The Lancet.

[84]  M. Weller,et al.  Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis , 2008, Nature Medicine.

[85]  A. Verkman,et al.  Cystic Fibrosis Transmembrane Conductance Regulator-independent Phagosomal Acidification in Macrophages* , 2007, Journal of Biological Chemistry.

[86]  N. Mizushima,et al.  How to Interpret LC3 Immunoblotting , 2007, Autophagy.

[87]  V. Bindokas,et al.  CFTR regulates phagosome acidification in macrophages and alters bactericidal activity , 2006, Nature Cell Biology.

[88]  Hideyuki Okano,et al.  Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice , 2006, Nature.

[89]  G. Pier,et al.  Localization of Cystic Fibrosis Transmembrane Conductance Regulator to Lipid Rafts of Epithelial Cells Is Required for Pseudomonas aeruginosa-Induced Cellular Activation 1 , 2004, The Journal of Immunology.

[90]  C. Hart,et al.  Persistent and aggressive bacteria in the lungs of cystic fibrosis children. , 2002, British medical bulletin.

[91]  R. Haugland,et al.  Probing the cathepsin D using a BODIPY FL-pepstatin A: applications in fluorescence polarization and microscopy. , 2000, Journal of biochemical and biophysical methods.

[92]  N. Bradbury,et al.  Intracellular CFTR: localization and function. , 1999, Physiological reviews.

[93]  K. Thomas,et al.  A mouse model for the delta F508 allele of cystic fibrosis. , 1995, The Journal of clinical investigation.

[94]  J. W. Wilson,et al.  CFTR does not alter acidification of L cell endosomes. , 1994, Biochemical and biophysical research communications.

[95]  B. Koller,et al.  An Animal Model for Cystic Fibrosis Made by Gene Targeting , 1992, Science.

[96]  A. Prince,et al.  Defective acidification of intracellular organelles in cystic fibrosis , 1991, Nature.

[97]  J. Gustafson,et al.  Cystic Fibrosis , 2009, Journal of the Iowa Medical Society.