Targeting CD44 receptor-positive lung tumors using polysaccharide-based nanocarriers: Influence of nanoparticle size and administration route.

[1]  Mengxiao Yu,et al.  Clearance Pathways and Tumor Targeting of Imaging Nanoparticles. , 2015, ACS nano.

[2]  P. Diot,et al.  Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[3]  O. Tillement,et al.  Quantitative biodistribution and pharmacokinetics of multimodal gadolinium-based nanoparticles for lungs using ultrashort TE MRI , 2014, Magnetic Resonance Materials in Physics, Biology and Medicine.

[4]  O. Tillement,et al.  Targeting and in vivo imaging of non-small–cell lung cancer using nebulized multimodal contrast agents , 2014, Proceedings of the National Academy of Sciences.

[5]  P. Choyke,et al.  Improving Conventional Enhanced Permeability and Retention (EPR) Effects; What Is the Appropriate Target? , 2013, Theranostics.

[6]  Giuseppe Battaglia,et al.  Exploiting endocytosis for nanomedicines. , 2013, Cold Spring Harbor perspectives in biology.

[7]  G. De Rosa,et al.  Lipid-Based Nanovectors for Targeting of CD44-Overexpressing Tumor Cells , 2013, Journal of drug delivery.

[8]  V. Nicolas,et al.  Hyaluronic acid-bearing lipoplexes: physico-chemical characterization and in vitro targeting of the CD44 receptor. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[9]  S. Lecommandoux,et al.  Smart polymersomes for therapy and diagnosis: fast progress toward multifunctional biomimetic nanomedicines. , 2012, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[10]  Jean-Luc Coll,et al.  Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution. , 2012, Advanced drug delivery reviews.

[11]  Xinli Liu,et al.  Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes. , 2011, Molecular pharmaceutics.

[12]  Kit S Lam,et al.  The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. , 2011, Biomaterials.

[13]  Jun Fang,et al.  The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. , 2011, Advanced drug delivery reviews.

[14]  L. Sancey,et al.  Optical small animal imaging in the drug discovery process. , 2010, Biochimica et biophysica acta.

[15]  Hak Soo Choi,et al.  Rapid translocation of nanoparticles from the lung airspaces to the body , 2010, Nature Biotechnology.

[16]  M. Kéramidas,et al.  Intraoperative near‐infrared image‐guided surgery for peritoneal carcinomatosis in a preclinical experimental model , 2010, The British journal of surgery.

[17]  B. Toole Hyaluronan-CD44 Interactions in Cancer: Paradoxes and Possibilities , 2009, Clinical Cancer Research.

[18]  A. Misra,et al.  Biomimetic doxorubicin loaded polymersomes from hyaluronan-block-poly(gamma-benzyl glutamate) copolymers. , 2009, Biomacromolecules.

[19]  Lisa Brannon-Peppas,et al.  Active targeting schemes for nanoparticle systems in cancer therapeutics. , 2008, Advanced drug delivery reviews.

[20]  Eric Pridgen,et al.  Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles , 2008, Molecular pharmaceutics.

[21]  D. Taton,et al.  Synthesis of block copolypeptides by click chemistry , 2008 .

[22]  F. Szoka,et al.  Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. , 2008, Molecular pharmaceutics.

[23]  R. Löbenberg,et al.  Targeted delivery of nanoparticles for the treatment of lung diseases. , 2008, Advanced drug delivery reviews.

[24]  M. Kris,et al.  Cancer Care Ontario and American Society of Clinical Oncology Adjuvant Chemotherapy and Adjuvant Radiation Therapy for Stages I-IIIA Resectable Non-Small-Cell Lung Cancer Guideline. , 2007, Journal of oncology practice.

[25]  V. Soldi,et al.  Small-Angle Neutron Scattering from Diblock Copolymer Poly(styrene-d8)-b-poly(γ-benzyl l-glutamate) Solutions: Rod−Coil to Coil−Coil Transition , 2003 .

[26]  Sébastien Lecommandoux,et al.  Self-Assembly of Rod−Coil Diblock Oligomers Based on α-Helical Peptides , 2001 .

[27]  Maxime Henry,et al.  Nebulized gadolinium-based nanoparticles: a theranostic approach for lung tumor imaging and radiosensitization. , 2015, Small.

[28]  A. Bhatt,et al.  Amphiphilic PEO-b-PBLG diblock and PBLG-b-PEO-b-PBLG triblock copolymer based nanoparticles: doxorubicin loading and in vitro evaluation. , 2015, Macromolecular bioscience.

[29]  Colin Bonduelle,et al.  Synthesis and self-assembly of branched glycopolypeptides: effect of topology and conformation. , 2013, Faraday discussions.

[30]  A. Jemal,et al.  Cancer statistics, 2012 , 2012, CA: a cancer journal for clinicians.

[31]  Michael R Hamblin,et al.  CA : A Cancer Journal for Clinicians , 2011 .

[32]  Hak Soo Choi,et al.  Design considerations for tumour-targeted nanoparticles. , 2010, Nature nanotechnology.

[33]  P. Diot,et al.  Aerosolized chemotherapy. , 2008, Journal of aerosol medicine and pulmonary drug delivery.