Exploring the Use of Local Descriptors for Fish Recognition in LifeCLEF 2015

This paper summarizes the proposal made by the SIANI team for the LifeCLEF 2015 Fish task. The approach makes use of standard detection techniques, applying a multiclass SVM based classifier on large enough Regions Of Interest (ROIs) automatically extracted from the provided video frames. The selection of the detection and classification modules is based on the best performance achieved for the validation dataset consisting of 20 annotated videos. For that dataset, the best classification achieved for an ideal detection module, reaches an accuracy around 40%.

[1]  Matti Pietikäinen,et al.  IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, TPAMI-2008-09-0620 1 WLD: A Robust Local Image Descriptor , 2022 .

[2]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[3]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[4]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[5]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[6]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[7]  Daijin Kim,et al.  Robust face detection using local gradient patterns and evidence accumulation , 2012, Pattern Recognit..

[8]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[9]  Laura Fernández-Robles,et al.  Local Oriented Statistics Information Booster (LOSIB) for Texture Classification , 2014, 2014 22nd International Conference on Pattern Recognition.

[10]  Frédéric Precioso,et al.  Fish Species Recognition from Video using SVM Classifier , 2014, MAED '14.

[11]  Ville Ojansivu,et al.  Blur Insensitive Texture Classification Using Local Phase Quantization , 2008, ICISP.

[12]  J. Mothe,et al.  LifeCLEF 2015 : Multimedia Life Species Identification Challenges , 2014 .

[13]  Thomas Serre,et al.  A Component-based Framework for Face Detection and Identification , 2007, International Journal of Computer Vision.

[14]  Hervé Glotin,et al.  LifeCLEF 2014: Multimedia Life Species Identification Challenges , 2014, CLEF.

[15]  Javier Lorenzo-Navarro,et al.  Improving Gender Classification Accuracy in the Wild , 2013, CIARP.

[16]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Sergio A. Velastin,et al.  Automatic congestion detection system for underground platforms , 2001, Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing. ISIMP 2001 (IEEE Cat. No.01EX489).

[18]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).